论文名称 | Efficient federated learning under non-IID conditions with attackers |
---|---|
作者 | Huan Zou, Yuchao Zhang, Xirong Que, Yilei Liang, J. Crowcroft |
来源 | ACM Workshop on Data Privacy and Federated Learning Technologies for Mobile Edge Network 2022 |
领域 | Machine Learning - Federal learning - Security - untarget poisoning attack |
问题 | 许多防御手段要求数据均匀分布,而在non-I.I.D条件下,设计高效的鲁棒FL算法面临着两个额外的挑战:识别恶意客户端和保证模型的准确性 |
方法 | Cominer工作流由标签聚类过程和垂直比较过程组成: LC通过对客户端进行聚类来支持non-IID数据的多样性,从而解决准确率下降的问题,然后VC识别并消除每个集群中的恶意客户端 |
阅读记录
总结
在数据异构的场景下,为了保证全局模型可以学习到更全面的数据信息,需要根据数据分布划分客户端模型,并在不同分布中去除恶意客户端