READ-2342 Efficient federated learning under non-IID conditions with attackers

论文名称Efficient federated learning under non-IID conditions with attackers
作者Huan Zou, Yuchao Zhang, Xirong Que, Yilei Liang, J. Crowcroft
来源ACM Workshop on Data Privacy and Federated Learning Technologies for Mobile Edge Network 2022
领域Machine Learning - Federal learning - Security - untarget poisoning attack
问题许多防御手段要求数据均匀分布,而在non-I.I.D条件下,设计高效的鲁棒FL算法面临着两个额外的挑战:识别恶意客户端和保证模型的准确性
方法Cominer工作流由标签聚类过程和垂直比较过程组成: LC通过对客户端进行聚类来支持non-IID数据的多样性,从而解决准确率下降的问题,然后VC识别并消除每个集群中的恶意客户端

阅读记录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

在数据异构的场景下,为了保证全局模型可以学习到更全面的数据信息,需要根据数据分布划分客户端模型,并在不同分布中去除恶意客户端

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值