READ-2307 The Limitations of Federated Learning in Sybil Settings

文章探讨了在联邦学习环境中女巫攻击的问题,提出了新类型的女巫拒绝服务攻击,并详细介绍了防御方法FoolsGold。FoolsGold利用更新的相似性调整学习率来区分恶意和诚实客户端,但面临假阳性和假阴性率的问题。此外,它在特定攻击策略下防御效果有限。
摘要由CSDN通过智能技术生成

READ-2307 The Limitations of Federated Learning in Sybil Settings

论文名称The Limitations of Federated Learning in Sybil Settings
作者Clement Fung, Chris J. M. Yoon, Ivan Beschastnikh
来源RAID 2020
领域Machine Learning - Federal learning - Security - Defense targeted & data poisoning attac
问题1.对于FL的基于女巫攻击的研究较少 2.已有的防御方式难以抵御训练膨胀攻击
方法本文定义了一种女巫拒绝服务攻击,并且针对这种新型攻击方式设计了相应的防御方式,即根据客户端更新的相似性调整客户端学习率
创新提出女巫攻击及防御方法

阅读记录

一、攻击
  1. 女巫攻击:多个恶意客户端由一个攻击者控制
  2. 攻击类型:女巫发起的有目标投毒攻击
    1
  3. 假设
    (1)客户端的数据不可相互访问,攻击者也不能访问其他诚实客户端的数据
    (2)攻击者只能通过FL API访问并影响模型的状态
    (3)攻击者可以获取全局模型,但不能获取诚实客户端的本地模型
    (4)服务器是可靠非恶意的
    (5)女巫可以躲避基于非对称密钥的防御方式
  4. 攻击者的能力
    (1)攻击者对系统的影响随着女巫的增加而增加
    (2)女巫获取的知识是固定的:女巫只能获取全局模型
  5. 攻击目标
    (1)攻击类型
    2
    (2)女巫攻击
    3
    (3)女巫攻击和不同类型攻击结合
    4
二、防御
  1. 已有的防御方式
    对于Multi-Krum、median、trimmed mean,这三种健壮性聚合方法在拜占庭攻击者数量较少时可以进行较好的防御,但是攻击者数量大于一定限制时,防御失效。
  2. 模型假设
    (1)客户端的数据集集合拥有所有标签空间中的所有标签
    (2)由于scaling attack已经被其他工作很好的防御,本文并不考虑对于这种攻击的防御
    (3)FoolsGold中不使用安全聚合方法,并且要求同步执行FL
    (4)恶意客户端在执行攻击时无需进行差分隐私操作
  3. 原理
    在实施有目标投毒攻击时,女巫之间的更新比诚实客户端之间的更新更相似,当客户端更新高度相似时,将赋予其较低的学习率。基于女巫之间的更新比诚实客户端之间的更新更相似的原理,FoolsGold可以很好的区分诚实客户端和act-alike女巫,在non-IID设置中尤其明显。
    5
  4. FoolsGold
    (1)Cosine similarity
    余弦相似度:由于女巫可以通过改变梯度的大小从而实现不相似性,而梯度的方向表示了更新的目标,因此选择余弦相似度比欧氏距离更合理
    note:
    ①余弦相似度:把目标当作向量,计算两个向量间的角度,以衡量二者方向上的相似程度
    ②欧氏距离:把目标当作点,计算两点之间的绝对距离,以衡量二者的位置上的相似程度
    (2)Feature importance
    特征重要性:
    ①从投毒攻击的角度,一个模型由三种特征:
  • 与模型正确性相关的特征,并且修改了这种特征后才能实施成功的攻击
  • 与模型正确性相关的特征,但是是否修改这种特征与攻击的成功与否无关
  • 与模型正确性和攻击成功与否都无关的特征
    注意,本文只关注第1、2种类型的指示性特征
    ②寻找指示性特征
    由于全局模型输出层的模型参数直接映射到预测结果,因此可以通过测量该层参数的改变幅度寻找指示性特征。
    (3)Update history
    更新历史:由于SGD的偏差,即使两个女巫的目标相同,同一轮迭代种二者之间的差别仍然较大,因此使用历史更新之间的相似度而非当前迭代更新相似度
    (4)Pardoning
    赦免:
    ①由于诚实客户端可能被当作恶意客户端,因此通过重新对余弦相似度进行赋值,减少假阳率
    ②将余弦相似度翻转后形成学习率,对学习率进行正则化后,可以保证至少有一个客户端的更新不被修改,从而鼓励诚实客户端不被惩罚
    (5)Logit
    逻辑回归:即使非常相似的更新也可能导致余弦相似度小于1,为了鼓励函数末端值的发散性,同时避免诚实客户端由于较低的非零相似度被惩罚,使用置信参数扩大中心为0.5的逻辑函数,使得学习率在0-1之间
    6

总结

本文从恶意客户端与诚实客户端之间的区别出发,设计了Fools Gold防御方式,但存在以下问题:

  1. 在攻击者数量较少时假阳率较高
  2. 在恶意客户端较多时假阴率较高

因此,我认为,如果从相似度的角度进行防御,我们不仅需要思考恶意客户端和良性客户端之间的区别,还需要思考恶意客户端之间的共性和良性客户端的共性。用分类问题的思想来思考,就是需要增大类间距,缩小类内距。

同时,尽管 FoolsGold 在对抗有目标投毒攻击方面表现出色,但不能很好地捍卫其他基于女巫的策略,如协同攻击、适应性攻击、智能扰动、分布式后门。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值