READ-2356 Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Client

本文探讨了在联邦学习中,通过记录和分析梯度的长短期历史,有效区分恶意客户端(包括目标攻击者和无目标攻击者)、类似恶意的良性客户端以及正常客户端的方法,利用距离和相似性度量对抗投毒攻击和噪声干扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文名称 Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning
作者 Ashish Gupta, Tie Luo, Mao V. Ngo, Sajal K. Das
来源 ESORICS 2022
领域 Machine Learning - Federal learning - Security – poisoning attack
问题 已有的防御机制主要针对恶意客户端和良性客户端进行两重区分,而三重区分更具有挑战:恶意客户端、由于具有低质量训练数据而类似恶意客户端的良性客户端、良性客户端,并且恶意客户端又可以进一步分为有目标攻击者和无目标攻击者
方法 在迭代过程中记录梯度的长-短历史,并利用距离和相似性度量识别不可靠客户端, 再进一步考虑有目标和无目标攻击以及更细粒度的攻击类型

阅读记录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值