论文名称 | Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning |
---|---|
作者 | Ashish Gupta, Tie Luo, Mao V. Ngo, Sajal K. Das |
来源 | ESORICS 2022 |
领域 | Machine Learning - Federal learning - Security – poisoning attack |
问题 | 已有的防御机制主要针对恶意客户端和良性客户端进行两重区分,而三重区分更具有挑战:恶意客户端、由于具有低质量训练数据而类似恶意客户端的良性客户端、良性客户端,并且恶意客户端又可以进一步分为有目标攻击者和无目标攻击者 |
方法 | 在迭代过程中记录梯度的长-短历史,并利用距离和相似性度量识别不可靠客户端, 再进一步考虑有目标和无目标攻击以及更细粒度的攻击类型 |
阅读记录