谓词逻辑的基本概念

谓词逻辑是数学逻辑的一部分,用于描述个体的属性和关系。个体是谓词逻辑的基本单位,可以用小写字母表示;谓词用来刻画个体的性质和关系,如‘是大学生’、‘大于’等。命题函数则是带有个体变元的表达式,需要个体填充才能成为命题。个体域定义了个体变元的取值范围。量词‘存在量词’和‘全称量词’用于表达对个体的量化。特性谓词常与量词结合,用于表述命题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

谓词逻辑

一、个体

​ 能够独立存在的具体或抽象的事物,称之为个体,也称之为客体。通常用小写英文字母a、b、c、……表示。

个体常项:具体的或特定的个体,常用a,b,c……等小写字母表示。

个体变元:泛指某一个个体。常用x,y,z来表示

二、谓词

用以刻画个体属性或者表达个体之间关系的词,即为谓词。

谓词一般用大写字母表示

例:令S:是大学生 a:小张 b:小李 命题:小张是大学生 可表示成S(a)

​ 命题:小李是大学生 可表示成S(b)

设Q:大于 命题3>7表示为Q(3,7)

设B:表示……在……与……之间

命题:点a在点b与点c之间表示为B(a,b,c)

表示具体性质与关系的谓词称为谓词常项

泛指某一性质或关系的谓词称为谓词变项

一般地,含有n(n>0)个个体变元x1,x2,…,xn的谓词P称为n元谓词,记作P(x1,x2,…,xn).

当n=1 P(x)表示x具有性质P

当n>1 P (x1,x2,…,xn)表示x1,x2…,xn具有关系P

约定:

  1. 将不带个体变元的谓词称为0元谓词
  2. 当谓词是常项时,0元谓词是命题
  3. 当谓词是变项时,0元谓词是命题变元
三、命题函数

含有n个变元的命题函数是以个体域,以{F,T}为值域的n元函数

例:A(x):x身体好

​ G(x,y):x>y

注:命题函数本身并不是命题,只有在括号内填入足够的具体客体,或用足够的量词约束后才变成命题。

四、个体域

个体变元的取值范围,称之为个体域,也称之为论域。

由所有个体构成的个体域,称之为全总个体域。它是“最大”的个体域。

约定:对于一个命题函数,如果没有指明其个体域,则假定其个体域是全总个体域。

五、量词

在命题中,表示对个体量化的词,称之为量词。

例如:有些人是大学生

所有事物都是发展变化的

有两种量词:

(1)存在量词:记作∃,表示“有些”、“一些”等

(2)全称量词:记作 ∀,表示“任何一个”,“一切”等

量词的指导变元:量词后边要有一个个体变元,指明对哪个个体变元进行量化,称此个体变元是指导变元。如:∃x x为指导变元

六、特性谓词

一般来说,特性谓词是描述个体特征的谓词,往往就是给定命题中量词后边的那个名词

​ 对全称量词,特性谓词常做蕴含前件

​ 对存在量词.特性谓词常做合取项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值