谓词公式与量词的辖域

一、原子谓词公式

称n元谓词P(x1,x2,…,xn)为原子谓词公式

二、谓词合式公式

定义:(1)原子谓词公式是合式公式。

​ (2)如果A是合式公式,则!A也是合式公式。

​ (3)如果A、B是合式公式,则(A^B)、(A V B)、(A->B)、(A<->B)都是合式公式。

​ (4)如果A是合适公式,x是A中的个体变元,则 ∀ xA和 ∃ xA也是合式公式。

​ (5)只有有限次地应用(1)至(4)得到的符号串才是合式公式

合式公式也称为谓词公式,简称公式,为了方便,最外层括号可以省略。

注意:若量词后边有括号,则此括号不能省略

三、量词的作用域(辖域)

在谓词公式中,量词的作用范围称之为量词的作用域,也叫量词的辖域。

例:∀xA(x)中∀ x的辖域为A(x)

​ ∃x(A(x)→B(x))中∃x的辖域为(A(x)→B(x))

一般地

*如果量词后边只是一个原子谓词公式时,该量词的辖域就是此原子谓词公式。

*如果量词后边是括号,则此括号所表示的区域就是该量词的辖域。

*如果多个量词紧挨着出现,则后边的量词及其辖域就是前边量词的辖域。

四、自由变元与约束变元

在谓词公式中的个体变元可以分为两种,一种是受到量词约束的,一种是不受量词约束的。

定义:如果客体变元x在∀x或∃x的辖域内,则称x在此辖域内约束出现,并称x在此辖域内时约束变元。否则x是自由出现,并称x是自由变元。

(1)一个n元谓词若在前面添加k个量词,使其中的k个个体变元变成约束变元,则此n元谓词就变成了n-k元谓词

(2)一个谓词公式如果无自由变元,他就表示一个命题。

约束变元的换名规则:

设A为一谓词公式,将A中某量词的辖域内的一个约束变元的所有出现及相应的指导变元全部改成A中没出现过的某个变元符号,A中其余部分不变,记所得公式为A‘,则A<=>A’。

对自由变元也可以换名,此换名叫代入

自由变元的带入规则

设A为一谓词公式将A中某个自由出现的个体变元的所有出现用某个A中没出现过的变元符号代替,A中其余部分不变,记所得公式为A‘,则A<=>A’。

  • 15
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
谓词公式是一个包含谓词符号和量词的表达式,通常表示为∀x P(x)或∃x P(x),其中x是一个变量,P(x)是一个包含该变量的命题。合取样式是一个由多个命题通过逻辑连接词“并”组成的表达式。将谓词公式转化为合取样式的方法是: 1. 将所有的量词移到公式的最前面,并且改变公式的语法结构。对于∀x P(x),可以根据逆否命题变形成为¬∃x ¬P(x)的形式;对于∃x P(x),可以根据逆否命题变形成为¬∀x ¬P(x)的形式。 2. 对于每个谓词P(x),构造一个命题Qi,表示P(x)为真的所有情况。例如,如果P(x)表示“x是奇数”,那么命题Qi可以表示为“x是1、3、5、7、9等等奇数”。 3. 将所有的命题Qi连接成一个合取样式,用“并”连接。例如,对于两个命题Qi和Qj,它们可以连接成(Qi 并且 Qj)的形式。 4. 最后,将量词和命题Qi代入公式中,得到一个等价的合取样式。 举个例子,将∀x (P(x) ∧ Q(x))转化为合取样式: 1. 对于∀x (P(x) ∧ Q(x)),变形为¬∃x ¬(P(x) ∧ Q(x))。 2. 构造命题Q1表示“在所有满足P(x)和Q(x)的情况下,x是1的情况”,Q2表示“在所有满足P(x)和Q(x)的情况下,x是2的情况”,以此类推。 3. 将所有命题Qi用“并”连接,得到(Q1 并且 Q2 并且 … 并且 Qn)。 4. 代入量词和Qi,得到((P(1) ∧ Q(1)) 并且 (P(2) ∧ Q(2)) 并且 … 并且 (P(n) ∧ Q(n)))的合取样式。 因此,∀x (P(x) ∧ Q(x))的合取样式为(P(1) ∧ Q(1)) 并且 (P(2) ∧ Q(2)) 并且 … 并且 (P(n) ∧ Q(n))。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值