优化器(如SGD)与反向传播之间的关系

本文详细阐述了反向传播算法如何计算神经网络参数的梯度,以及优化器如何根据这些梯度和超参数调整模型以降低损失。以随机梯度下降为例,揭示了训练过程中的迭代更新机制。
摘要由CSDN通过智能技术生成

反向传播和优化器

  • 反向传播

反向传播是用于计算神经网络中各个参数(权重和偏置)的梯度的算法。在训练神经网络时,首先通过前向传播计算模型的输出,然后根据模型输出与真实标签之间的差异(损失函数),利用反向传播算法计算损失函数对每个参数的梯度。这些梯度表示了调整参数方向的信息,使得模型可以朝着降低损失的方向更新参数。

  • 优化器

优化器是用于更新模型参数的算法。它根据反向传播得到的参数梯度,以及预先设定的一些超参数(如学习率,动量),来更新模型的权重和偏置,以减小损失函数并提高模型性能。常见的优化器包括随机梯度下降(SGD)、Adam等。

两者之间的关系

  • 反向传播负责计算模型参数的梯度,即告诉优化器每个参数的梯度方向。优化器根据这些梯度信息,结合预设的超参数,更新模型的参数,使得损失函数尽量减小。
  • 训练过程:在每个训练步骤中,首先进行前向传播计算模型输出和损失,然后利用反向传播计算参数梯度,最后优化器根据这些梯度更新模型参数。这个过程不断迭代,直到模型收敛或达到预设的训练轮数。

举例(对于随机梯度下降优化器)

  1. 在训练批次中,通过反向传播计算损失函数对每个参数的梯度。
  2. SGD根据这些梯度和学习率的设置,更新模型的参数:新参数值=就参数值-学习率*梯度。
  3. 这个过程通过不断迭代,使得模型逐渐优化并学习到数据中的特征,最终达到更好的泛化能力
  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播算法是一种用于训练神经网络的算法,它通过计算损失函数对每个参数的梯度来更新参数,从而使得神经网络的输出更加接近于真实值。反向传播算法的核心思想是链式法则,即将损失函数对输出的偏导数不断向前传递,直到计算出每个参数的偏导数。反向传播算法通常与优化器一起使用,优化器用于根据参数的梯度更新参数的值,从而最小化损失函数。 PyTorch中的优化器可以帮助我们更方便地实现反向传播算法。torch.optim模块提供了各种优化算法的实现,包括SGD、RMSprop、Adam等。其中,SGD是最基本的优化算法,它通过计算参数的梯度来更新参数的值。RMSprop和Adam是SGD的改进版,它们可以更快地收敛,并且对于不同的参数具有不同的学习率。 以下是反向传播算法和优化器的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义神经网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义损失函数和优化器 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 训练神经网络 for epoch in range(100): optimizer.zero_grad() output = net(torch.randn(1, 10)) loss = criterion(output, torch.randn(1, 1)) loss.backward() optimizer.step() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值