反向传播和优化器
- 反向传播
反向传播是用于计算神经网络中各个参数(权重和偏置)的梯度的算法。在训练神经网络时,首先通过前向传播计算模型的输出,然后根据模型输出与真实标签之间的差异(损失函数),利用反向传播算法计算损失函数对每个参数的梯度。这些梯度表示了调整参数方向的信息,使得模型可以朝着降低损失的方向更新参数。
- 优化器
优化器是用于更新模型参数的算法。它根据反向传播得到的参数梯度,以及预先设定的一些超参数(如学习率,动量),来更新模型的权重和偏置,以减小损失函数并提高模型性能。常见的优化器包括随机梯度下降(SGD)、Adam等。
两者之间的关系
- 反向传播负责计算模型参数的梯度,即告诉优化器每个参数的梯度方向。优化器根据这些梯度信息,结合预设的超参数,更新模型的参数,使得损失函数尽量减小。
- 训练过程:在每个训练步骤中,首先进行前向传播计算模型输出和损失,然后利用反向传播计算参数梯度,最后优化器根据这些梯度更新模型参数。这个过程不断迭代,直到模型收敛或达到预设的训练轮数。
举例(对于随机梯度下降优化器)
- 在训练批次中,通过反向传播计算损失函数对每个参数的梯度。
- SGD根据这些梯度和学习率的设置,更新模型的参数:新参数值=就参数值-学习率*梯度。
- 这个过程通过不断迭代,使得模型逐渐优化并学习到数据中的特征,最终达到更好的泛化能力