pytorch
文章平均质量分 95
梦想的理由
这个作者很懒,什么都没留下…
展开
-
掌握numpy.einsum与torch.einsum:提升科学计算与深度学习中的运算效率和代码可读性
本文介绍了numpy.einsum和torch.einsum在科学计算和深度学习中的应用,包括Einstein求和记号的概念及其简化复杂运算的作用。详细阐述了两者的使用方法,如numpy.einsum的基础操作和torch.einsum在复杂运算如注意力机制以及自动微分中的优势。通过对比einsum与手动实现的嵌套循环运算,深入理解其机制。该博客旨在帮助读者熟练掌握这两种工具,提升计算效率和代码可读性,以应对各类科学计算和深度学习任务。原创 2023-12-26 12:57:04 · 2283 阅读 · 0 评论 -
深入理解PyTorch中的Hook机制:特征可视化的重要工具与实践
本博客探讨了PyTorch中hook函数在特征可视化中的应用。重点介绍了register_forward_hook()、register_backward_hook()和register_hook()的使用。register_forward_hook()用于中间层特征分析和可视化,register_backward_hook()用于梯度监控和梯度爆炸检测,而register_hook()提供细粒度控制,适用于变量级别梯度监控和自定义计算图操作。原创 2023-12-19 22:41:52 · 2929 阅读 · 1 评论