爆改模型
码龄4年
关注
提问 私信
  • 博客:9,697
    9,697
    总访问量
  • 12
    原创
  • 56,178
    排名
  • 600
    粉丝
  • 86
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2020-10-18
博客简介:

m0_51665349的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    162
    当月
    27
个人成就
  • 获得243次点赞
  • 内容获得12次评论
  • 获得122次收藏
  • 代码片获得145次分享
创作历程
  • 12篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
  • Java
    java
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLOv10改进|爆改模型|涨点|在骨干网络中添加核变形卷积AKConv、注意力模块CA和TFAM特征融合模块(附代码+修改教程)

本文修改的模型是YOLOv10,YOLOv10无需非极大值抑制(NMS)进行后处理,其推理速度以及参数量上都优于现有的模型。在原本的YOLOv10网络结构中,骨干网络最后一层为PSA模块。本文在PSA模块后面追加新模块DCCA,该模块由核变形卷积AKConv、注意力模块CA(Coordinate attention)及特征融合模块TFAM组成。其中,AKConv卷积模块赋予卷积核任意数量的参数和任意采样形状,可以降低网络训练开销,同时提升模型的适应性。
原创
发布博客 2024.10.17 ·
682 阅读 ·
23 点赞 ·
0 评论 ·
6 收藏

YOLOv10改进|爆改模型|涨点|在骨干网络中添加RT-DETR中的CCFM模块和动态卷积ODConv(附代码+修改教程)

本文修改的模型是YOLOv10,YOLOv10无需非极大值抑制(NMS)进行后处理,其推理速度以及参数量上都优于现有的模型。在原本的YOLOv10网络结构中,骨干网络最后一层为PSA模块。本文在PSA模块后面追加CCFM模块,并使用ODConv卷积模块提升模型的泛化性。
原创
发布博客 2024.10.12 ·
879 阅读 ·
24 点赞 ·
2 评论 ·
7 收藏

RT-DETR改进|爆改模型|涨点|在CCFM模块中加入特征融合模块DFM(附代码+修改教程)

本文修改的模型是RT-DETR,在原本的RT-DETR中,CCFM模块输出的多尺度特征图作为 IoU-aware Query Selection的输入。本文将骨干网络及AIFI模块输出的特征图与CCFM模块输出的特征图使用DFM模块进行特征融合。DFM是一种基于密集连接的简单而有效的特征融合模块,可以减少特征不对齐,并计算出更准确的变化特征。
原创
发布博客 2024.10.11 ·
723 阅读 ·
11 点赞 ·
1 评论 ·
14 收藏

RT-DETR改进|爆改模型|涨点|在骨干网络和CCFM模块之间加入EfficientDet中的BiFPN颈部网络(附代码+修改教程)

本文修改的模型是Deformable-,在原本的RT-DETR中,骨干网络的最高层级输出作为AIFI模块的输入,低层级特征图作为CCFM特征融合模块的输入。本文将骨干网络的输出先作为BiFPN(Bi-directional Feature Pyramid Network)金字塔网络的输入,在将BiFPN的输出作为AIFI模块和CCFM模块的输入。BiFPN通过在不同尺度的特征金字塔网络中引入双向连接,实现了跨层级的信息交流和融合。
原创
发布博客 2024.10.10 ·
788 阅读 ·
13 点赞 ·
1 评论 ·
14 收藏

RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)

本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(Visual State Space Model)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。
原创
发布博客 2024.10.09 ·
1649 阅读 ·
43 点赞 ·
3 评论 ·
21 收藏

Deformable DETR改进|爆改模型|涨点|在骨干网络和可变形编码器间加入YOLOv10的PSA和SCDown模块(附代码+修改教程)

本文修改的模型是Deformable-DETR,在骨干网络和可变形编码器之间加入YOLOv10的PSA和SCDown模块。其中PSA是YOLOv10提出的一种高效的自注意力模块,为了避免注意力带来的巨额开销,本文将PSA应用于可变形编码器输入的最高层级特征图。SCConv是一种空间和通道解耦的卷积模块,本文将其应用于骨干网络输出的特征图的特征融合,提升模型的多尺度能力。
原创
发布博客 2024.10.08 ·
820 阅读 ·
22 点赞 ·
3 评论 ·
6 收藏

Deformable DETR改进|爆改模型|涨点|在骨干网络和可变形编码器间加入AFPN颈部网络(附代码+修改教程)

本文修改的模型是Deformable-DETR,在原本的Deformable DETR中,骨干网络的输出通过卷积层后直接作为可变形编码器的输入,无颈部网络。本文在Deformable DETR的骨干网络和可变形编码器之间加入渐近特征金字塔网络(AFPN)作为颈部网络。AFPN的核心在于引入了一种逐步特征融合策略,将底层和高层特征逐渐引入目标检测过程。通过这种方式,可以有效减小不同层次特征之间的语义差异,增强特征融合的效果,使检测模型更好地适应多层次的语义信息。
原创
发布博客 2024.10.04 ·
556 阅读 ·
14 点赞 ·
0 评论 ·
2 收藏

RT-DETR改进|爆改模型|涨点|在AIFI和CCFM之间加入I2U-Net中的HIFA模块(附代码+修改教程)

本文修改的模型是RT-DETR,在原本的RT-DETR中,CCFM的多尺度输入为AIFI及骨干网络的输出。本文在RT-DETR的CCFM模块输入的三个层级特征图之前使用I2U-Net的HIFA以提升模型的特征融合能力。I2U-Net是一种一种新颖的双路径 U-Net,其中提出了一种全面信息融合和增强模块(HIFA),可以有效地连接编码器和解码器。
原创
发布博客 2024.10.01 ·
941 阅读 ·
20 点赞 ·
1 评论 ·
14 收藏

使用pycocotools打印各个类别的AP值及IOU=0.5时的APS、APM及APL

是用于处理 COCO 数据集的 Python 工具包,提供数据加载、评估工具和可视化功能。它简化了目标检测和图像分割任务,比如计算检测精度、召回率和 IOU(Intersection over Union)。安装pycocotools。
原创
发布博客 2024.09.26 ·
463 阅读 ·
4 点赞 ·
1 评论 ·
10 收藏

Deformable DETR改进|爆改模型|涨点|在骨干网络和可变形编码器间加入EfficientDet中的BiFPN颈部网络(附代码+修改教程)

本文修改的模型是Deformable-DETR,在原本的Deformable DETR中,骨干网络的输出通过卷积层后直接作为可变形编码器的输入,无颈部网络。本文在Deformable DETR的骨干网络和可变形编码器之间加入EfficientDet中的BiFPN作为颈部网络,提升模型的特征融合能力。
原创
发布博客 2024.09.26 ·
684 阅读 ·
25 点赞 ·
0 评论 ·
7 收藏

Deformable-DETR模型代码

发布资源 2024.09.24 ·
zip

Deformable DETR改进|爆改模型|在可变形编解码器之间加入RT-DETR中的CCFM模块(附代码+修改教程)

本文修改的模型是Deformable-DETR,修改的位置是在可变形编码器和可变形解码器之间,在可变形编码器和可变形解码器之间加入RT-DERT中的CCFM模块,CCFM模块的输入为可变形编码器的最高层级特征图以及backbone的输出。CCFM模块可以提升模型的特征融合能力。
原创
发布博客 2024.09.24 ·
655 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

Deformable DETR改进|爆改模型|在可变形编解码器之间加入空洞卷积金字塔和注意力(附代码+修改教程)

本文修改的模型是Deformable-DETR,修改的位置是在可变形编码器和可变形解码器之间,在底层特征图中加入空洞卷积金字塔(ASPP)和注意力机制(ECA),提升模型对小物体的目标检测能力。
原创
发布博客 2024.09.23 ·
475 阅读 ·
13 点赞 ·
0 评论 ·
6 收藏