一、文本介绍
本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(Visual State Space Model)替换ResNet作为RT-DETR的骨干网络。
VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实现线性复杂度。为了解决方向敏感性问题,VMamba引入了交叉扫描模块(Cross-Scan Module, CSM),通过遍历空间域,将非因果的视觉图像转换为有序的块序列。该模型不仅在多种视觉感知任务中展现出卓越的性能,而且随着图像分辨率的提高,与现有基准相比,VMamba的优势更加显著。
VMamba论文:https://arxiv.org/abs/2401.10166
VMamba代码:https://github.com/MzeroMiko/VMamba
二、模型图
VMamba整体架构图
三、核心代码
代码目录结构
vmamba.py定义了VMamba的核心代码,vmamba.p依赖于mamba2、csm_triton.py和csms6s.py中的模块,mamba2、csm_triton.py和csms6s.py可以从VMamba官方代码中的classification/models拷贝
vmamba.py的具体代码如下:
这里需要导入src.core的register,并且Backbone_VSSM类使用@Register进行注册。
import os
import time
import math
import copy
from functools import partial
from typing import Optional, Callable, Any
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, trunc_normal_
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count, parameter_count
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
# train speed is slower after enabling this opts.
# torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
try:
from .csm_triton import cross_scan_fn, cross_merge_fn
except:
from csm_triton import cross_scan_fn, cross_merge_fn
try:
from .csms6s import selective_scan_fn, selective_scan_flop_jit
except:
from csms6s import selective_scan_fn, selective_scan_flop_jit
# FLOPs counter not prepared fro mamba2
try:
from .mamba2.ssd_minimal import selective_scan_chunk_fn
except:
from mamba2.ssd_minimal import selective_scan_chunk_fn
from src.core import register
# =====================================================
# we have this class as linear and conv init differ from each other
# this function enable loading from both conv2d or linear
class Linear2d(nn.Linear):
def forward(self, x: torch.Tensor):
# B, C, H, W = x.shape
return F.conv2d(x, self.weight[:, :, None, None], self.bias)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs):
state_dict[prefix + "weight"] = state_dict[prefix + "weight"].view(self.weight.shape)
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs)
class LayerNorm2d(nn.LayerNorm):
def forward(self, x: torch.Tensor):
x = x.permute(0, 2, 3, 1)
x = nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
x = x.permute(0, 3, 1, 2)
return x
class PatchMerging2D(nn.Module):
def __init__(self, dim, out_dim=-1, norm_layer=nn.LayerNorm, channel_first=False):
super().__init__()
self.dim = dim
Linear = Linear2d if channel_first else nn.Linear
self._patch_merging_pad = self._patch_merging_pad_channel_first if channel_first else self._patch_merging_pad_channel_last
self.reduction = Linear(4 * dim, (2 * dim) if out_dim < 0 else out_dim, bias=False)
self.norm = norm_layer(4 * dim)
@staticmethod
def _patch_merging_pad_channel_last(x: torch.Tensor):
H, W, _ = x.shape[-3:]
if (W % 2 != 0) or (H % 2 != 0):
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[..., 0::2, 0::2, :] # ... H/2 W/2 C
x1 = x[..., 1::2, 0::2, :] # ... H/2 W/2 C
x2 = x[..., 0::2, 1::2, :] # ... H/2 W/2 C
x3 = x[..., 1::2, 1::2, :] # ... H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # ... H/2 W/2 4*C
return x
@staticmethod
def _patch_merging_pad_channel_first(x: torch.Tensor):
H, W = x.shape[-2:]
if (W % 2 != 0) or (H % 2 != 0):
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[..., 0::2, 0::2] # ... H/2 W/2
x1 = x[..., 1::2, 0::2] # ... H/2 W/2
x2 = x[..., 0::2, 1::2] # ... H/2 W/2
x3 = x[..., 1::2, 1::2] # ... H/2 W/2
x = torch.cat([x0, x1, x2, x3], 1) # ... H/2 W/2 4*C
return x
def forward(self, x):
x = self._patch_merging_pad(x)
x = self.norm(x)
x = self.reduction(x)
return x
class Permute(nn.Module):
def __init__(self, *args):
super().__init__()
self.args = args
def forward(self, x: torch.Tensor):
return x.permute(*self.args)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,
channels_first=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
Linear = Linear2d if channels_first else nn.Linear
self.fc1 = Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class gMlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,
channels_first=False):
super().__init__()
self.channel_first = channels_first
out_features = out_features or in_features
hidden_features = hidden_features or in_features
Linear = Linear2d if channels_first else nn.Linear
self.fc1 = Linear(in_features, 2 * hidden_features)
self.act = act_layer()
self.fc2 = Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x: torch.Tensor):
x = self.fc1(x)
x, z = x.chunk(2, dim=(1 if self.channel_first else -1))
x = self.fc2(x * self.act(z))
x = self.drop(x)
return x
class SoftmaxSpatial(nn.Softmax):
def forward(self, x: torch.Tensor):
if self.dim == -1:
B, C, H, W = x.shape
return super().forward(x.view(B, C, -1)).view(B, C, H, W)
elif self.dim == 1:
B, H, W, C = x.shape
return super().forward(x.view(B, -1, C)).view(B, H, W, C)
else:
raise NotImplementedError
# =====================================================
class mamba_init:
@staticmethod
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4):
dt_proj = nn.Linear(dt_rank, d_inner, bias=True)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = dt_rank ** -0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(d_inner) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
# dt_proj.bias._no_reinit = True
return dt_proj
@staticmethod
def A_log_init(d_state, d_inner, copies=-1, device=None, merge=True):
# S4D real initialization
A = torch.arange(1, d_state + 1, dtype=torch.float32, device=device).view(1, -1).repeat(d_inner, 1).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
if copies > 0:
A_log = A_log[None].repeat(copies, 1, 1).contiguous()
if merge:
A_log = A_log.flatten(0, 1)
A_log = nn.Parameter(A_log)
A_log._no_weight_decay = True
return A_log
@staticmethod
def D_init(d_inner, copies=-1, device=None, merge=True):
# D "skip" parameter
D = torch.ones(d_inner, device=device)
if copies > 0:
D = D[None].repeat(copies, 1).contiguous()
if merge:
D = D.flatten(0, 1)
D = nn.Parameter(D) # Keep in fp32
D._no_weight_decay = True
return D
@classmethod
def init_dt_A_D(cls, d_state, dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, k_group=4):
# dt proj ============================
dt_projs = [
cls.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor)
for _ in range(k_group)
]
dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in dt_projs], dim=0)) # (K, inner, rank)
dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in dt_projs], dim=0)) # (K, inner)
del dt_projs
# A, D =======================================
A_logs = cls.A_log_init(d_state, d_inner, copies=k_group, merge=True) # (K * D, N)
Ds = cls.D_init(d_inner, copies=k_group, merge=True) # (K * D)
return A_logs, Ds, dt_projs_weight, dt_projs_bias
# support: v0, v0seq
class SS2Dv0:
def __initv0__(
self,
# basic dims ===========
d_model=96,
d_state=16,
ssm_ratio=2.0,
dt_rank="auto",
# ======================
dropout=0.0,
# ======================
seq=False,
force_fp32=True,
**kwargs,
):
if "channel_first" in kwargs:
assert not kwargs["channel_first"]
act_layer = nn.SiLU
dt_min = 0.001
dt_max = 0.1
dt_init = "random"
dt_scale = 1.0
dt_init_floor = 1e-4
bias = False
conv_bias = True
d_conv = 3
k_group = 4
factory_kwargs = {"device": None, "dtype": None}
super().__init__()
d_inner = int(ssm_ratio * d_model)
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank
self.forward = self.forwardv0
if seq:
self.forward = partial(self.forwardv0, seq=True)
if not force_fp32:
self.forward = partial(self.forwardv0, force_fp32=False)
# in proj ============================
self.in_proj = nn.Linear(d_model, d_inner * 2, bias=bias)
self.act: nn.Module = act_layer()
self.conv2d = nn.Conv2d(
in_channels=d_inner,
out_channels=d_inner,
groups=d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
**factory_kwargs,
)
# x proj ============================
self.x_proj = [
nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False)
for _ in range(k_group)
]
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K, N, inner)
del self.x_proj
# dt proj, A, D ============================
self.A_logs, self.Ds, self.dt_projs_weight, self.dt_projs_bias = mamba_init.init_dt_A_D(
d_state, dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, k_group=4,
)
# out proj =======================================
self.out_norm = nn.LayerNorm(d_inner)
self.out_proj = nn.Linear(d_inner, d_model, bias=bias)
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity()
def forwardv0(self, x: torch.Tensor, seq=False, force_fp32=True, **kwargs):
x = self.in_proj(x)
x, z = x.chunk(2, dim=-1) # (b, h, w, d)
z = self.act(z)
x = x.permute(0, 3, 1, 2).contiguous()
x = self.conv2d(x) # (b, d, h, w)
x = self.act(x)
selective_scan = partial(selective_scan_fn, backend="mamba")
B, D, H, W = x.shape
D, N = self.A_logs.shape
K, D, R = self.dt_projs_weight.shape
L = H * W
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight)
if hasattr(self, "x_proj_bias"):
x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight)
xs = xs.view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().view(B, -1, L) # (b, k * d, l)
Bs = Bs.contiguous() # (b, k, d_state, l)
Cs = Cs.contiguous() # (b, k, d_state, l)
As = -self.A_logs.float().exp() # (k * d, d_state)
Ds = self.Ds.float() # (k * d)
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
# assert len(xs.shape) == 3 and len(dts.shape) == 3 and len(Bs.shape) == 4 and len(Cs.shape) == 4
# assert len(As.shape) == 2 and len(Ds.shape) == 1 and len(dt_projs_bias.shape) == 1
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)
if force_fp32:
xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)
if seq:
out_y = []
for i in range(4):
yi = selective_scan(
xs.view(B, K, -1, L)[:, i], dts.view(B, K, -1, L)[:, i],
As.view(K, -1, N)[i], Bs[:, i].unsqueeze(1), Cs[:, i].unsqueeze(1), Ds.view(K, -1)[i],
delta_bias=dt_projs_bias.view(K, -1)[i],
delta_softplus=True,
).view(B, -1, L)
out_y.append(yi)
out_y = torch.stack(out_y, dim=1)
else:
out_y = selective_scan(
xs, dts,
As, Bs, Cs, Ds,
delta_bias=dt_projs_bias,
delta_softplus=True,
).view(B, K, -1, L)
assert out_y.dtype == torch.float
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
y = out_y[:, 0] + inv_y[:, 0] + wh_y + invwh_y
y = y.transpose(dim0=1, dim1=2).contiguous() # (B, L, C)
y = self.out_norm(y).view(B, H, W, -1)
y = y * z
out = self.dropout(self.out_proj(y))
return out
# support: v01-v05; v051d,v052d,v052dc;
# postfix: _onsigmoid,_onsoftmax,_ondwconv3,_onnone;_nozact,_noz;_oact;_no32;
# history support: v2,v3;v31d,v32d,v32dc;
class SS2Dv2:
def __initv2__(
self,
# basic dims ===========
d_model=96,
d_state=16,
ssm_ratio=2.0,
dt_rank="auto",
act_layer=nn.SiLU,
# dwconv ===============
d_conv=3, # < 2 means no conv
conv_bias=True,
# ======================
dropout=0.0,
bias=False,
# dt init ==============
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
initialize="v0",
# ======================
forward_type="v2",
channel_first=False,
# ======================
**kwargs,
):
factory_kwargs = {"device": None, "dtype": None}
super().__init__()
self.k_group = 4
self.d_model = int(d_model)
self.d_state = int(d_state)
self.d_inner = int(ssm_ratio * d_model)
self.dt_rank = int(math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank)
self.channel_first = channel_first
self.with_dconv = d_conv > 1
Linear = Linear2d if channel_first else nn.Linear
self.forward = self.forwardv2
# tags for forward_type ==============================
checkpostfix = self.checkpostfix
self.disable_force32, forward_type = checkpostfix("_no32", forward_type)
self.oact, forward_type = checkpostfix("_oact", forward_type)
self.disable_z, forward_type = checkpostfix("_noz", forward_type)
self.disable_z_act, forward_type = checkpostfix("_nozact", forward_type)
self.out_norm, forward_type = self.get_outnorm(forward_type, self.d_inner, channel_first)
# forward_type debug =======================================
FORWARD_TYPES = dict(
v01=partial(self.forward_corev2, force_fp32=(not self.disable_force32), selective_scan_backend="mamba",
scan_force_torch=True),
v02=partial(self.forward_corev2, force_fp32=(not self.disable_force32), selective_scan_backend="mamba"),
v03=partial(self.forward_corev2, force_fp32=(not self.disable_force32), selective_scan_backend="oflex"),
v04=partial(self.forward_corev2, force_fp32=False), # selective_scan_backend="oflex", scan_mode="cross2d"
v05=partial(self.forward_corev2, force_fp32=False, no_einsum=True),
# selective_scan_backend="oflex", scan_mode="cross2d"
# ===============================
v051d=partial(self.forward_corev2, force_fp32=False, no_einsum=True, scan_mode="unidi"),
v052d=partial(self.forward_corev2, force_fp32=False, no_einsum=True, scan_mode="bidi"),
v052dc=partial(self.forward_corev2, force_fp32=False, no_einsum=True, scan_mode="cascade2d"),
v052d3=partial(self.forward_corev2, force_fp32=False, no_einsum=True, scan_mode=3), # debug
# ===============================
v2=partial(self.forward_corev2, force_fp32=(not self.disable_force32), selective_scan_backend="oflex"),
v3=partial(self.forward_corev2, force_fp32=False, selective_scan_backend="oflex"),
)
self.forward_core = FORWARD_TYPES.get(forward_type, None)
# in proj =======================================
d_proj = self.d_inner if self.disable_z else (self.d_inner * 2)
self.in_proj = Linear(self.d_model, d_proj, bias=bias)
self.act: nn.Module = act_layer()
# conv =======================================
if self.with_dconv:
self.conv2d = nn.Conv2d(
in_channels=self.d_inner,
out_channels=self.d_inner,
groups=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
**factory_kwargs,
)
# x proj ============================
self.x_proj = [
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False)
for _ in range(self.k_group)
]
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K, N, inner)
del self.x_proj
# out proj =======================================
self.out_act = nn.GELU() if self.oact else nn.Identity()
self.out_proj = Linear(self.d_inner, self.d_model, bias=bias)
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity()
if initialize in ["v0"]:
self.A_logs, self.Ds, self.dt_projs_weight, self.dt_projs_bias = mamba_init.init_dt_A_D(
self.d_state, self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
k_group=self.k_group,
)
elif initialize in ["v1"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((self.k_group * self.d_inner)))
self.A_logs = nn.Parameter(torch.randn(
(self.k_group * self.d_inner, self.d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_weight = nn.Parameter(
0.1 * torch.randn((self.k_group, self.d_inner, self.dt_rank))) # 0.1 is added in 0430
self.dt_projs_bias = nn.Parameter(0.1 * torch.randn((self.k_group, self.d_inner))) # 0.1 is added in 0430
elif initialize in ["v2"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((self.k_group * self.d_inner)))
self.A_logs = nn.Parameter(torch.zeros(
(self.k_group * self.d_inner, self.d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((self.k_group, self.d_inner, self.dt_rank)))
self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((self.k_group, self.d_inner)))
def forward_corev2(
self,
x: torch.Tensor = None,
# ==============================
force_fp32=False, # True: input fp32
# ==============================
ssoflex=True, # True: input 16 or 32 output 32 False: output dtype as input
no_einsum=False, # replace einsum with linear or conv1d to raise throughput
# ==============================
selective_scan_backend=None,
# ==============================
scan_mode="cross2d",
scan_force_torch=False,
# ==============================
**kwargs,
):
assert selective_scan_backend in [None, "oflex", "mamba", "torch"]
_scan_mode = dict(cross2d=0, unidi=1, bidi=2, cascade2d=-1).get(scan_mode, None) if isinstance(scan_mode,
str) else scan_mode # for debug
assert isinstance(_scan_mode, int)
delta_softplus = True
out_norm = self.out_norm
channel_first = self.channel_first
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)
B, D, H, W = x.shape
N = self.d_state
K, D, R = self.k_group, self.d_inner, self.dt_rank
L = H * W
def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True):
return selective_scan_fn(u, delta, A, B, C, D, delta_bias, delta_softplus, ssoflex,
backend=selective_scan_backend)
if _scan_mode == -1:
x_proj_bias = getattr(self, "x_proj_bias", None)
def scan_rowcol(
x: torch.Tensor,
proj_weight: torch.Tensor,
proj_bias: torch.Tensor,
dt_weight: torch.Tensor,
dt_bias: torch.Tensor, # (2*c)
_As: torch.Tensor, # As = -torch.exp(A_logs.to(torch.float))[:2,] # (2*c, d_state)
_Ds: torch.Tensor,
width=True,
):
# x: (B, D, H, W)
# proj_weight: (2 * D, (R+N+N))
XB, XD, XH, XW = x.shape
if width:
_B, _D, _L = XB * XH, XD, XW
xs = x.permute(0, 2, 1, 3).contiguous()
else:
_B, _D, _L = XB * XW, XD, XH
xs = x.permute(0, 3, 1, 2).contiguous()
xs = torch.stack([xs, xs.flip(dims=[-1])], dim=2) # (B, H, 2, D, W)
if no_einsum:
x_dbl = F.conv1d(xs.view(_B, -1, _L), proj_weight.view(-1, _D, 1),
bias=(proj_bias.view(-1) if proj_bias is not None else None), groups=2)
dts, Bs, Cs = torch.split(x_dbl.view(_B, 2, -1, _L), [R, N, N], dim=2)
dts = F.conv1d(dts.contiguous().view(_B, -1, _L), dt_weight.view(2 * _D, -1, 1), groups=2)
else:
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, proj_weight)
if x_proj_bias is not None:
x_dbl = x_dbl + x_proj_bias.view(1, 2, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_weight)
xs = xs.view(_B, -1, _L)
dts = dts.contiguous().view(_B, -1, _L)
As = _As.view(-1, N).to(torch.float)
Bs = Bs.contiguous().view(_B, 2, N, _L)
Cs = Cs.contiguous().view(_B, 2, N, _L)
Ds = _Ds.view(-1)
delta_bias = dt_bias.view(-1).to(torch.float)
if force_fp32:
xs = xs.to(torch.float)
dts = dts.to(xs.dtype)
Bs = Bs.to(xs.dtype)
Cs = Cs.to(xs.dtype)
ys: torch.Tensor = selective_scan(
xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
).view(_B, 2, -1, _L)
return ys
As = -self.A_logs.to(torch.float).exp().view(4, -1, N)
x = F.layer_norm(x.permute(0, 2, 3, 1), normalized_shape=(int(x.shape[1]),)).permute(0, 3, 1,
2).contiguous() # added0510 to avoid nan
y_row = scan_rowcol(
x,
proj_weight=self.x_proj_weight.view(4, -1, D)[:2].contiguous(),
proj_bias=(x_proj_bias.view(4, -1)[:2].contiguous() if x_proj_bias is not None else None),
dt_weight=self.dt_projs_weight.view(4, D, -1)[:2].contiguous(),
dt_bias=(self.dt_projs_bias.view(4, -1)[:2].contiguous() if self.dt_projs_bias is not None else None),
_As=As[:2].contiguous().view(-1, N),
_Ds=self.Ds.view(4, -1)[:2].contiguous().view(-1),
width=True,
).view(B, H, 2, -1, W).sum(dim=2).permute(0, 2, 1, 3) # (B,C,H,W)
y_row = F.layer_norm(y_row.permute(0, 2, 3, 1), normalized_shape=(int(y_row.shape[1]),)).permute(0, 3, 1,
2).contiguous() # added0510 to avoid nan
y_col = scan_rowcol(
y_row,
proj_weight=self.x_proj_weight.view(4, -1, D)[2:].contiguous().to(y_row.dtype),
proj_bias=(
x_proj_bias.view(4, -1)[2:].contiguous().to(y_row.dtype) if x_proj_bias is not None else None),
dt_weight=self.dt_projs_weight.view(4, D, -1)[2:].contiguous().to(y_row.dtype),
dt_bias=(self.dt_projs_bias.view(4, -1)[2:].contiguous().to(
y_row.dtype) if self.dt_projs_bias is not None else None),
_As=As[2:].contiguous().view(-1, N),
_Ds=self.Ds.view(4, -1)[2:].contiguous().view(-1),
width=False,
).view(B, W, 2, -1, H).sum(dim=2).permute(0, 2, 3, 1)
y = y_col
else:
x_proj_bias = getattr(self, "x_proj_bias", None)
xs = cross_scan_fn(x, in_channel_first=True, out_channel_first=True, scans=_scan_mode,
force_torch=scan_force_torch)
if no_einsum:
x_dbl = F.conv1d(xs.view(B, -1, L), self.x_proj_weight.view(-1, D, 1),
bias=(x_proj_bias.view(-1) if x_proj_bias is not None else None), groups=K)
dts, Bs, Cs = torch.split(x_dbl.view(B, K, -1, L), [R, N, N], dim=2)
if hasattr(self, "dt_projs_weight"):
dts = F.conv1d(dts.contiguous().view(B, -1, L), self.dt_projs_weight.view(K * D, -1, 1), groups=K)
else:
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight)
if x_proj_bias is not None:
x_dbl = x_dbl + x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2)
if hasattr(self, "dt_projs_weight"):
dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight)
xs = xs.view(B, -1, L)
dts = dts.contiguous().view(B, -1, L)
As = -self.A_logs.to(torch.float).exp() # (k * c, d_state)
Ds = self.Ds.to(torch.float) # (K * c)
Bs = Bs.contiguous().view(B, K, N, L)
Cs = Cs.contiguous().view(B, K, N, L)
delta_bias = self.dt_projs_bias.view(-1).to(torch.float)
if force_fp32:
xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)
ys: torch.Tensor = selective_scan(
xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
).view(B, K, -1, H, W)
y: torch.Tensor = cross_merge_fn(ys, in_channel_first=True, out_channel_first=True, scans=_scan_mode,
force_torch=scan_force_torch)
if getattr(self, "__DEBUG__", False):
setattr(self, "__data__", dict(
A_logs=self.A_logs, Bs=Bs, Cs=Cs, Ds=Ds,
us=xs, dts=dts, delta_bias=delta_bias,
ys=ys, y=y, H=H, W=W,
))
y = y.view(B, -1, H, W)
if not channel_first:
y = y.view(B, -1, H * W).transpose(dim0=1, dim1=2).contiguous().view(B, H, W, -1) # (B, L, C)
y = out_norm(y)
return y.to(x.dtype)
def forwardv2(self, x: torch.Tensor, **kwargs):
x = self.in_proj(x)
if not self.disable_z:
x, z = x.chunk(2, dim=(1 if self.channel_first else -1)) # (b, h, w, d)
if not self.disable_z_act:
z = self.act(z)
if not self.channel_first:
x = x.permute(0, 3, 1, 2).contiguous()
if self.with_dconv:
x = self.conv2d(x) # (b, d, h, w)
x = self.act(x)
y = self.forward_core(x)
y = self.out_act(y)
if not self.disable_z:
y = y * z
out = self.dropout(self.out_proj(y))
return out
@staticmethod
def get_outnorm(forward_type="", d_inner=192, channel_first=True):
def checkpostfix(tag, value):
ret = value[-len(tag):] == tag
if ret:
value = value[:-len(tag)]
return ret, value
LayerNorm = LayerNorm2d if channel_first else nn.LayerNorm
out_norm_none, forward_type = checkpostfix("_onnone", forward_type)
out_norm_dwconv3, forward_type = checkpostfix("_ondwconv3", forward_type)
out_norm_cnorm, forward_type = checkpostfix("_oncnorm", forward_type)
out_norm_softmax, forward_type = checkpostfix("_onsoftmax", forward_type)
out_norm_sigmoid, forward_type = checkpostfix("_onsigmoid", forward_type)
out_norm = nn.Identity()
if out_norm_none:
out_norm = nn.Identity()
elif out_norm_cnorm:
out_norm = nn.Sequential(
LayerNorm(d_inner),
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
)
elif out_norm_dwconv3:
out_norm = nn.Sequential(
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
)
elif out_norm_softmax:
out_norm = SoftmaxSpatial(dim=(-1 if channel_first else 1))
elif out_norm_sigmoid:
out_norm = nn.Sigmoid()
else:
out_norm = LayerNorm(d_inner)
return out_norm, forward_type
@staticmethod
def checkpostfix(tag, value):
ret = value[-len(tag):] == tag
if ret:
value = value[:-len(tag)]
return ret, value
# support: xv1a,xv2a,xv3a;
# postfix: _cpos;_ocov;_ocov2;_ca,_ca1;_act;_mul;_onsigmoid,_onsoftmax,_ondwconv3,_onnone;
class SS2Dv3:
def __initxv__(
self,
# basic dims ===========
d_model=96,
d_state=16,
ssm_ratio=2.0,
dt_rank="auto",
# dwconv ===============
d_conv=3, # < 2 means no conv
conv_bias=True,
# ======================
dropout=0.0,
bias=False,
# dt init ==============
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
initialize="v0",
# ======================
forward_type="v2",
channel_first=False,
# ======================
**kwargs,
):
super().__init__()
d_inner = int(ssm_ratio * d_model)
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank
self.channel_first = channel_first
self.d_state = d_state
self.dt_rank = dt_rank
self.d_inner = d_inner
k_group = 4
self.with_dconv = d_conv > 1
Linear = Linear2d if channel_first else nn.Linear
self.forward = self.forwardxv
# tags for forward_type ==============================
checkpostfix = SS2Dv2.checkpostfix
self.out_norm, forward_type = SS2Dv2.get_outnorm(forward_type, d_inner, channel_first)
self.omul, forward_type = checkpostfix("_mul", forward_type)
self.oact, forward_type = checkpostfix("_act", forward_type)
self.f_omul = nn.Identity() if self.omul else None
self.out_act = nn.GELU() if self.oact else nn.Identity()
mode = forward_type[:4]
assert mode in ["xv1a", "xv2a", "xv3a"]
self.forward = partial(self.forwardxv, mode=mode)
self.dts_dim = dict(xv1a=self.dt_rank, xv2a=self.d_inner, xv3a=4 * self.dt_rank)[mode]
d_inner_all = d_inner + self.dts_dim + 8 * d_state
self.in_proj = Linear(d_model, d_inner_all, bias=bias)
# conv =======================================
self.cpos = False
self.iconv = False
self.oconv = False
self.oconv2 = False
if self.with_dconv:
cact, forward_type = checkpostfix("_ca", forward_type)
cact1, forward_type = checkpostfix("_ca1", forward_type)
self.cact = nn.SiLU() if cact else nn.Identity()
self.cact = nn.GELU() if cact1 else self.cact
self.oconv2, forward_type = checkpostfix("_ocov2", forward_type)
self.oconv, forward_type = checkpostfix("_ocov", forward_type)
self.cpos, forward_type = checkpostfix("_cpos", forward_type)
self.iconv = (not self.oconv) and (not self.oconv2)
if self.iconv:
self.conv2d = nn.Conv2d(
in_channels=d_model,
out_channels=d_model,
groups=d_model,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
)
if self.oconv:
self.oconv2d = nn.Conv2d(
in_channels=d_inner,
out_channels=d_inner,
groups=d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
)
if self.oconv2:
self.conv2d = nn.Conv2d(
in_channels=d_inner_all,
out_channels=d_inner_all,
groups=d_inner_all,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
)
# out proj =======================================
self.out_proj = Linear(d_inner, d_model, bias=bias)
self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity()
if initialize in ["v0"]:
self.A_logs, self.Ds, self.dt_projs_weight, self.dt_projs_bias = mamba_init.init_dt_A_D(
d_state, dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, k_group=4,
)
elif initialize in ["v1"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
self.A_logs = nn.Parameter(
torch.randn((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_weight = nn.Parameter(torch.randn((k_group, d_inner, dt_rank)))
self.dt_projs_bias = nn.Parameter(torch.randn((k_group, d_inner)))
elif initialize in ["v2"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((k_group * d_inner)))
self.A_logs = nn.Parameter(
torch.zeros((k_group * d_inner, d_state))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((k_group, d_inner, dt_rank)))
self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, d_inner)))
if forward_type.startswith("xv2"):
del self.dt_projs_weight
self.dt_projs_weight = None
def forwardxv(self, x: torch.Tensor, **kwargs):
B, (H, W) = x.shape[0], (x.shape[2:4] if self.channel_first else x.shape[1:3])
L = H * W
force_fp32 = False
delta_softplus = True
out_norm = self.out_norm
to_dtype = True
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)
def selective_scan(u, delta, A, B, C, D, delta_bias, delta_softplus):
return selective_scan_fn(u, delta, A, B, C, D, delta_bias, delta_softplus, oflex=True, backend=None)
if self.iconv:
x = self.cact(self.conv2d(x)) # (b, d, h, w)
elif self.cpos:
x = x + self.conv2d(x) # (b, d, h, w)
x = self.in_proj(x)
if self.oconv2:
x = self.conv2d(x) # (b, d, h, w)
us, dts, Bs, Cs = x.split([self.d_inner, self.dts_dim, 4 * self.d_state, 4 * self.d_state],
dim=(1 if self.channel_first else -1))
_us = us
# Bs, Cs = Bs.view(B, H, W, 4, -1), Cs.view(B, H, W, 4, -1)
# Bs, Cs = Bs.view(B, 4, -1, H, W), Cs.view(B, 4, -1, H, W)
us = cross_scan_fn(us.contiguous(), in_channel_first=self.channel_first, out_channel_first=True).view(B, -1, L)
Bs = cross_scan_fn(Bs.contiguous(), in_channel_first=self.channel_first, out_channel_first=True,
one_by_one=True).view(B, 4, -1, L)
Cs = cross_scan_fn(Cs.contiguous(), in_channel_first=self.channel_first, out_channel_first=True,
one_by_one=True).view(B, 4, -1, L)
dts = cross_scan_fn(dts.contiguous(), in_channel_first=self.channel_first, out_channel_first=True,
one_by_one=(self.dts_dim == 4 * self.dt_rank)).view(B, L, -1)
if self.dts_dim == self.dt_rank:
dts = F.conv1d(dts, self.dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)
elif self.dts_dim == 4 * self.dt_rank:
dts = F.conv1d(dts, self.dt_projs_weight.view(4 * self.d_inner, self.dt_rank, 1), None, groups=4)
As = -self.A_logs.to(torch.float).exp() # (k * c, d_state)
Ds = self.Ds.to(torch.float) # (K * c)
delta_bias = self.dt_projs_bias.view(-1).to(torch.float) # (K * c)
if force_fp32:
us, dts, Bs, Cs = to_fp32(us, dts, Bs, Cs)
ys: torch.Tensor = selective_scan(
us, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus
).view(B, 4, -1, H, W)
y: torch.Tensor = cross_merge_fn(ys.contiguous(), in_channel_first=self.channel_first, out_channel_first=True)
y = y.view(B, -1, H, W) if self.channel_first else y.view(B, H, W, -1)
y = out_norm(y)
if getattr(self, "__DEBUG__", False):
setattr(self, "__data__", dict(
A_logs=self.A_logs, Bs=Bs, Cs=Cs, Ds=Ds,
us=us, dts=dts, delta_bias=delta_bias,
ys=ys, y=y,
))
y = (y.to(x.dtype) if to_dtype else y)
y = self.out_act(y)
if self.omul:
y = y * _us
if self.oconv:
y = y + self.cact(self.oconv2d(_us))
out = self.dropout(self.out_proj(y))
return out
# mamba2 support ================================
class SS2Dm0:
def __initm0__(
self,
# basic dims ===========
d_model=96,
d_state=16, # now with mamba2, dstate should be bigger...
ssm_ratio=2.0,
dt_rank="auto",
act_layer=nn.GELU,
# dwconv ===============
d_conv=3, # < 2 means no conv
conv_bias=True,
# ======================
dropout=0.0,
bias=False,
# dt init ==============
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
initialize="v2",
# ======================
forward_type="m0",
# ======================
with_initial_state=False,
# ======================
**kwargs,
):
factory_kwargs = {"device": None, "dtype": None}
super().__init__()
d_inner = int(ssm_ratio * d_model)
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank
assert d_inner % dt_rank == 0
self.with_dconv = d_conv > 1
Linear = nn.Linear
self.forward = self.forwardm0
# tags for forward_type ==============================
checkpostfix = SS2Dv2.checkpostfix
self.disable_force32, forward_type = checkpostfix("_no32", forward_type)
self.oact, forward_type = checkpostfix("_oact", forward_type)
self.disable_z, forward_type = checkpostfix("_noz", forward_type)
self.disable_z_act, forward_type = checkpostfix("_nozact", forward_type)
self.out_norm, forward_type = SS2Dv2.get_outnorm(forward_type, d_inner, False)
# forward_type debug =======================================
FORWARD_TYPES = dict(
m0=partial(self.forward_corem0, force_fp32=False, dstate=d_state),
)
self.forward_core = FORWARD_TYPES.get(forward_type, None)
k_group = 4
# in proj =======================================
d_proj = d_inner if self.disable_z else (d_inner * 2)
self.in_proj = Linear(d_model, d_proj, bias=bias)
self.act: nn.Module = act_layer()
# conv =======================================
if self.with_dconv:
self.conv2d = nn.Sequential(
Permute(0, 3, 1, 2),
nn.Conv2d(
in_channels=d_inner,
out_channels=d_inner,
groups=d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
**factory_kwargs,
),
Permute(0, 2, 3, 1),
)
# x proj ============================
self.x_proj = [
nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False)
for _ in range(k_group)
]
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K, N, inner)
del self.x_proj
# out proj =======================================
self.out_act = nn.GELU() if self.oact else nn.Identity()
self.out_proj = Linear(d_inner, d_model, bias=bias)
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity()
if initialize in ["v1"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((k_group, dt_rank, int(d_inner // dt_rank))))
self.A_logs = nn.Parameter(torch.randn((k_group, dt_rank))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_bias = nn.Parameter(0.1 * torch.randn((k_group, dt_rank))) # 0.1 is added in 0430
elif initialize in ["v2"]:
# simple init dt_projs, A_logs, Ds
self.Ds = nn.Parameter(torch.ones((k_group, dt_rank, int(d_inner // dt_rank))))
self.A_logs = nn.Parameter(torch.zeros((k_group, dt_rank))) # A == -A_logs.exp() < 0; # 0 < exp(A * dt) < 1
self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, dt_rank)))
# init state ============================
self.initial_state = None
if with_initial_state:
self.initial_state = nn.Parameter(torch.zeros((1, k_group * dt_rank, int(d_inner // dt_rank), d_state)),
requires_grad=False)
def forward_corem0(
self,
x: torch.Tensor = None,
# ==============================
force_fp32=False, # True: input fp32
chunk_size=64,
dstate=64,
# ==============================
selective_scan_backend=None,
scan_mode="cross2d",
scan_force_torch=False,
# ==============================
**kwargs,
):
assert scan_mode in ["unidi", "bidi", "cross2d"]
assert selective_scan_backend in [None, "triton", "torch"]
x_proj_bias = getattr(self, "x_proj_bias", None)
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args)
N = dstate
B, H, W, RD = x.shape
K, R = self.A_logs.shape
K, R, D = self.Ds.shape
assert RD == R * D
L = H * W
KR = K * R
_scan_mode = dict(cross2d=0, unidi=1, bidi=2, cascade2d=3)[scan_mode]
initial_state = None
if self.initial_state is not None:
assert self.initial_state.shape[-1] == dstate
initial_state = self.initial_state.detach().repeat(B, 1, 1, 1)
xs = cross_scan_fn(x.view(B, H, W, RD), in_channel_first=False, out_channel_first=False, scans=_scan_mode,
force_torch=scan_force_torch) # (B, H, W, 4, D)
x_dbl = torch.einsum("b l k d, k c d -> b l k c", xs, self.x_proj_weight)
if x_proj_bias is not None:
x_dbl = x_dbl + x_proj_bias.view(1, -1, K, 1)
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=3)
xs = xs.contiguous().view(B, L, KR, D)
dts = dts.contiguous().view(B, L, KR)
Bs = Bs.contiguous().view(B, L, K, N)
Cs = Cs.contiguous().view(B, L, K, N)
if force_fp32:
xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)
As = -self.A_logs.to(torch.float).exp().view(KR)
Ds = self.Ds.to(torch.float).view(KR, D)
dt_bias = self.dt_projs_bias.view(KR)
if force_fp32:
xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs)
ys, final_state = selective_scan_chunk_fn(
xs, dts, As, Bs, Cs, chunk_size=chunk_size, D=Ds, dt_bias=dt_bias,
initial_states=initial_state, dt_softplus=True, return_final_states=True,
backend=selective_scan_backend,
)
y: torch.Tensor = cross_merge_fn(ys.view(B, H, W, K, RD), in_channel_first=False, out_channel_first=False,
scans=_scan_mode, force_torch=scan_force_torch)
if getattr(self, "__DEBUG__", False):
setattr(self, "__data__", dict(
A_logs=self.A_logs, Bs=Bs, Cs=Cs, Ds=self.Ds,
us=xs, dts=dts, delta_bias=self.dt_projs_bias,
initial_state=self.initial_state, final_satte=final_state,
ys=ys, y=y, H=H, W=W,
))
if self.initial_state is not None:
self.initial_state = nn.Parameter(final_state.detach().sum(0, keepdim=True), requires_grad=False)
y = self.out_norm(y.view(B, H, W, -1))
return y.to(x.dtype)
def forwardm0(self, x: torch.Tensor, **kwargs):
x = self.in_proj(x)
if not self.disable_z:
x, z = x.chunk(2, dim=(1 if self.channel_first else -1)) # (b, h, w, d)
if not self.disable_z_act:
z = self.act(z)
if self.with_dconv:
x = self.conv2d(x) # (b, d, h, w)
x = self.act(x)
y = self.forward_core(x)
y = self.out_act(y)
if not self.disable_z:
y = y * z
out = self.dropout(self.out_proj(y))
return out
class SS2D(nn.Module, SS2Dv0, SS2Dv2, SS2Dv3, SS2Dm0):
def __init__(
self,
# basic dims ===========
d_model=96,
d_state=16,
ssm_ratio=2.0,
dt_rank="auto",
act_layer=nn.SiLU,
# dwconv ===============
d_conv=3, # < 2 means no conv
conv_bias=True,
# ======================
dropout=0.0,
bias=False,
# dt init ==============
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
initialize="v0",
# ======================
forward_type="v2",
channel_first=False,
# ======================
**kwargs,
):
nn.Module.__init__(self)
kwargs.update(
d_model=d_model, d_state=d_state, ssm_ratio=ssm_ratio, dt_rank=dt_rank,
act_layer=act_layer, d_conv=d_conv, conv_bias=conv_bias, dropout=dropout, bias=bias,
dt_min=dt_min, dt_max=dt_max, dt_init=dt_init, dt_scale=dt_scale, dt_init_floor=dt_init_floor,
initialize=initialize, forward_type=forward_type, channel_first=channel_first,
)
if forward_type in ["v0", "v0seq"]:
self.__initv0__(seq=("seq" in forward_type), **kwargs)
elif forward_type.startswith("xv"):
self.__initxv__(**kwargs)
elif forward_type.startswith("m"):
self.__initm0__(**kwargs)
else:
self.__initv2__(**kwargs)
# =====================================================
class VSSBlock(nn.Module):
def __init__(
self,
hidden_dim: int = 0,
drop_path: float = 0,
norm_layer: nn.Module = nn.LayerNorm,
channel_first=False,
# =============================
ssm_d_state: int = 16,
ssm_ratio=2.0,
ssm_dt_rank: Any = "auto",
ssm_act_layer=nn.SiLU,
ssm_conv: int = 3,
ssm_conv_bias=True,
ssm_drop_rate: float = 0,
ssm_init="v0",
forward_type="v2",
# =============================
mlp_ratio=4.0,
mlp_act_layer=nn.GELU,
mlp_drop_rate: float = 0.0,
gmlp=False,
# =============================
use_checkpoint: bool = False,
post_norm: bool = False,
# =============================
_SS2D: type = SS2D,
**kwargs,
):
super().__init__()
self.ssm_branch = ssm_ratio > 0
self.mlp_branch = mlp_ratio > 0
self.use_checkpoint = use_checkpoint
self.post_norm = post_norm
if self.ssm_branch:
self.norm = norm_layer(hidden_dim)
self.op = _SS2D(
d_model=hidden_dim,
d_state=ssm_d_state,
ssm_ratio=ssm_ratio,
dt_rank=ssm_dt_rank,
act_layer=ssm_act_layer,
# ==========================
d_conv=ssm_conv,
conv_bias=ssm_conv_bias,
# ==========================
dropout=ssm_drop_rate,
# bias=False,
# ==========================
# dt_min=0.001,
# dt_max=0.1,
# dt_init="random",
# dt_scale="random",
# dt_init_floor=1e-4,
initialize=ssm_init,
# ==========================
forward_type=forward_type,
channel_first=channel_first,
)
self.drop_path = DropPath(drop_path)
if self.mlp_branch:
_MLP = Mlp if not gmlp else gMlp
self.norm2 = norm_layer(hidden_dim)
mlp_hidden_dim = int(hidden_dim * mlp_ratio)
self.mlp = _MLP(in_features=hidden_dim, hidden_features=mlp_hidden_dim, act_layer=mlp_act_layer,
drop=mlp_drop_rate, channels_first=channel_first)
def _forward(self, input: torch.Tensor):
x = input
if self.ssm_branch:
if self.post_norm:
x = x + self.drop_path(self.norm(self.op(x)))
else:
x = x + self.drop_path(self.op(self.norm(x)))
if self.mlp_branch:
if self.post_norm:
x = x + self.drop_path(self.norm2(self.mlp(x))) # FFN
else:
x = x + self.drop_path(self.mlp(self.norm2(x))) # FFN
return x
def forward(self, input: torch.Tensor):
if self.use_checkpoint:
return checkpoint.checkpoint(self._forward, input)
else:
return self._forward(input)
class VSSM(nn.Module):
def __init__(
self,
patch_size=4,
in_chans=3,
num_classes=1000,
depths=[2, 2, 9, 2],
dims=[96, 192, 384, 768],
# =========================
ssm_d_state=16,
ssm_ratio=2.0,
ssm_dt_rank="auto",
ssm_act_layer="silu",
ssm_conv=3,
ssm_conv_bias=True,
ssm_drop_rate=0.0,
ssm_init="v0",
forward_type="v2",
# =========================
mlp_ratio=4.0,
mlp_act_layer="gelu",
mlp_drop_rate=0.0,
gmlp=False,
# =========================
drop_path_rate=0.1,
patch_norm=True,
norm_layer="LN", # "BN", "LN2D"
downsample_version: str = "v2", # "v1", "v2", "v3"
patchembed_version: str = "v1", # "v1", "v2"
use_checkpoint=False,
# =========================
posembed=False,
imgsize=224,
_SS2D=SS2D,
# =========================
**kwargs,
):
super().__init__()
self.channel_first = (norm_layer.lower() in ["bn", "ln2d"])
self.num_classes = num_classes
self.num_layers = len(depths)
if isinstance(dims, int):
dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)]
self.num_features = dims[-1]
self.dims = dims
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
_NORMLAYERS = dict(
ln=nn.LayerNorm,
ln2d=LayerNorm2d,
bn=nn.BatchNorm2d,
)
_ACTLAYERS = dict(
silu=nn.SiLU,
gelu=nn.GELU,
relu=nn.ReLU,
sigmoid=nn.Sigmoid,
)
norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None)
ssm_act_layer: nn.Module = _ACTLAYERS.get(ssm_act_layer.lower(), None)
mlp_act_layer: nn.Module = _ACTLAYERS.get(mlp_act_layer.lower(), None)
self.pos_embed = self._pos_embed(dims[0], patch_size, imgsize) if posembed else None
_make_patch_embed = dict(
v1=self._make_patch_embed,
v2=self._make_patch_embed_v2,
).get(patchembed_version, None)
self.patch_embed = _make_patch_embed(in_chans, dims[0], patch_size, patch_norm, norm_layer,
channel_first=self.channel_first)
_make_downsample = dict(
v1=PatchMerging2D,
v2=self._make_downsample,
v3=self._make_downsample_v3,
none=(lambda *_, **_k: None),
).get(downsample_version, None)
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
downsample = _make_downsample(
self.dims[i_layer],
self.dims[i_layer + 1],
norm_layer=norm_layer,
channel_first=self.channel_first,
) if (i_layer < self.num_layers - 1) else nn.Identity()
self.layers.append(self._make_layer(
dim=self.dims[i_layer],
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
use_checkpoint=use_checkpoint,
norm_layer=norm_layer,
downsample=downsample,
channel_first=self.channel_first,
# =================
ssm_d_state=ssm_d_state,
ssm_ratio=ssm_ratio,
ssm_dt_rank=ssm_dt_rank,
ssm_act_layer=ssm_act_layer,
ssm_conv=ssm_conv,
ssm_conv_bias=ssm_conv_bias,
ssm_drop_rate=ssm_drop_rate,
ssm_init=ssm_init,
forward_type=forward_type,
# =================
mlp_ratio=mlp_ratio,
mlp_act_layer=mlp_act_layer,
mlp_drop_rate=mlp_drop_rate,
gmlp=gmlp,
# =================
_SS2D=_SS2D,
))
self.classifier = nn.Sequential(OrderedDict(
norm=norm_layer(self.num_features), # B,H,W,C
permute=(Permute(0, 3, 1, 2) if not self.channel_first else nn.Identity()),
avgpool=nn.AdaptiveAvgPool2d(1),
flatten=nn.Flatten(1),
head=nn.Linear(self.num_features, num_classes),
))
self.apply(self._init_weights)
@staticmethod
def _pos_embed(embed_dims, patch_size, img_size):
patch_height, patch_width = (img_size // patch_size, img_size // patch_size)
pos_embed = nn.Parameter(torch.zeros(1, embed_dims, patch_height, patch_width))
trunc_normal_(pos_embed, std=0.02)
return pos_embed
def _init_weights(self, m: nn.Module):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
# used in building optimizer
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed"}
# used in building optimizer
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {}
@staticmethod
def _make_patch_embed(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm,
channel_first=False):
# if channel first, then Norm and Output are both channel_first
return nn.Sequential(
nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
(norm_layer(embed_dim) if patch_norm else nn.Identity()),
)
@staticmethod
def _make_patch_embed_v2(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm,
channel_first=False):
# if channel first, then Norm and Output are both channel_first
stride = patch_size // 2
kernel_size = stride + 1
padding = 1
return nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 2, kernel_size=kernel_size, stride=stride, padding=padding),
(nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 2, 3, 1)),
(norm_layer(embed_dim // 2) if patch_norm else nn.Identity()),
(nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 3, 1, 2)),
nn.GELU(),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
(norm_layer(embed_dim) if patch_norm else nn.Identity()),
)
@staticmethod
def _make_downsample(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False):
# if channel first, then Norm and Output are both channel_first
return nn.Sequential(
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
nn.Conv2d(dim, out_dim, kernel_size=2, stride=2),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
norm_layer(out_dim),
)
@staticmethod
def _make_downsample_v3(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False):
# if channel first, then Norm and Output are both channel_first
return nn.Sequential(
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)),
nn.Conv2d(dim, out_dim, kernel_size=3, stride=2, padding=1),
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)),
norm_layer(out_dim),
)
@staticmethod
def _make_layer(
dim=96,
drop_path=[0.1, 0.1],
use_checkpoint=False,
norm_layer=nn.LayerNorm,
downsample=nn.Identity(),
channel_first=False,
# ===========================
ssm_d_state=16,
ssm_ratio=2.0,
ssm_dt_rank="auto",
ssm_act_layer=nn.SiLU,
ssm_conv=3,
ssm_conv_bias=True,
ssm_drop_rate=0.0,
ssm_init="v0",
forward_type="v2",
# ===========================
mlp_ratio=4.0,
mlp_act_layer=nn.GELU,
mlp_drop_rate=0.0,
gmlp=False,
# ===========================
_SS2D=SS2D,
**kwargs,
):
# if channel first, then Norm and Output are both channel_first
depth = len(drop_path)
blocks = []
for d in range(depth):
blocks.append(VSSBlock(
hidden_dim=dim,
drop_path=drop_path[d],
norm_layer=norm_layer,
channel_first=channel_first,
ssm_d_state=ssm_d_state,
ssm_ratio=ssm_ratio,
ssm_dt_rank=ssm_dt_rank,
ssm_act_layer=ssm_act_layer,
ssm_conv=ssm_conv,
ssm_conv_bias=ssm_conv_bias,
ssm_drop_rate=ssm_drop_rate,
ssm_init=ssm_init,
forward_type=forward_type,
mlp_ratio=mlp_ratio,
mlp_act_layer=mlp_act_layer,
mlp_drop_rate=mlp_drop_rate,
gmlp=gmlp,
use_checkpoint=use_checkpoint,
_SS2D=_SS2D,
))
return nn.Sequential(OrderedDict(
blocks=nn.Sequential(*blocks, ),
downsample=downsample,
))
def forward(self, x: torch.Tensor):
x = self.patch_embed(x)
if self.pos_embed is not None:
pos_embed = self.pos_embed.permute(0, 2, 3, 1) if not self.channel_first else self.pos_embed
x = x + pos_embed
for layer in self.layers:
x = layer(x)
x = self.classifier(x)
return x
def flops(self, shape=(3, 224, 224), verbose=True):
# shape = self.__input_shape__[1:]
supported_ops = {
"aten::silu": None, # as relu is in _IGNORED_OPS
"aten::neg": None, # as relu is in _IGNORED_OPS
"aten::exp": None, # as relu is in _IGNORED_OPS
"aten::flip": None, # as permute is in _IGNORED_OPS
# "prim::PythonOp.CrossScan": None,
# "prim::PythonOp.CrossMerge": None,
"prim::PythonOp.SelectiveScanCuda": partial(selective_scan_flop_jit, backend="prefixsum", verbose=verbose),
}
model = copy.deepcopy(self)
model.cuda().eval()
input = torch.randn((1, *shape), device=next(model.parameters()).device)
params = parameter_count(model)[""]
Gflops, unsupported = flop_count(model=model, inputs=(input,), supported_ops=supported_ops)
del model, input
return sum(Gflops.values()) * 1e9
return f"params {params} GFLOPs {sum(Gflops.values())}"
# used to load ckpt from previous training code
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs):
def check_name(src, state_dict: dict = state_dict, strict=False):
if strict:
if prefix + src in list(state_dict.keys()):
return True
else:
key = prefix + src
for k in list(state_dict.keys()):
if k.startswith(key):
return True
return False
def change_name(src, dst, state_dict: dict = state_dict, strict=False):
if strict:
if prefix + src in list(state_dict.keys()):
state_dict[prefix + dst] = state_dict[prefix + src]
state_dict.pop(prefix + src)
else:
key = prefix + src
for k in list(state_dict.keys()):
if k.startswith(key):
new_k = prefix + dst + k[len(key):]
state_dict[new_k] = state_dict[k]
state_dict.pop(k)
if check_name("pos_embed", strict=True):
srcEmb: torch.Tensor = state_dict[prefix + "pos_embed"]
state_dict[prefix + "pos_embed"] = F.interpolate(srcEmb.float(), size=self.pos_embed.shape[2:4],
align_corners=False, mode="bicubic").to(srcEmb.device)
change_name("patch_embed.proj", "patch_embed.0")
change_name("patch_embed.norm", "patch_embed.2")
for i in range(100):
for j in range(100):
change_name(f"layers.{i}.blocks.{j}.ln_1", f"layers.{i}.blocks.{j}.norm")
change_name(f"layers.{i}.blocks.{j}.self_attention", f"layers.{i}.blocks.{j}.op")
change_name("norm", "classifier.norm")
change_name("head", "classifier.head")
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
error_msgs)
# compatible with openmmlab
@register
class Backbone_VSSM(VSSM):
def __init__(self, out_indices=(0, 1, 2, 3), pretrained=None, norm_layer="ln", **kwargs):
kwargs.update(norm_layer=norm_layer)
super().__init__(**kwargs)
self.channel_first = (norm_layer.lower() in ["bn", "ln2d"])
_NORMLAYERS = dict(
ln=nn.LayerNorm,
ln2d=LayerNorm2d,
bn=nn.BatchNorm2d,
)
norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None)
self.out_indices = out_indices
for i in out_indices:
layer = norm_layer(self.dims[i])
layer_name = f'outnorm{i}'
self.add_module(layer_name, layer)
del self.classifier
self.load_pretrained(pretrained)
def load_pretrained(self, ckpt=None, key="model"):
if ckpt is None:
return
try:
_ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu"))
print(f"Successfully load ckpt {ckpt}")
incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False)
print(incompatibleKeys)
except Exception as e:
print(f"Failed loading checkpoint form {ckpt}: {e}")
def forward(self, x):
def layer_forward(l, x):
x = l.blocks(x)
y = l.downsample(x)
return x, y
x = self.patch_embed(x)
outs = []
for i, layer in enumerate(self.layers):
o, x = layer_forward(layer, x) # (B, H, W, C)
if i in self.out_indices:
norm_layer = getattr(self, f'outnorm{i}')
out = norm_layer(o)
if not self.channel_first:
out = out.permute(0, 3, 1, 2)
outs.append(out.contiguous())
if len(self.out_indices) == 0:
return x
return outs
在_init_.py中需要导入vmamba.py中的模块
修改rtdetr_r50vd.yml配置文件(RT-DETR-main\rtdetr_pytorch\configs\rtdetr\include\rtdetr_r50vd.yml)
配置VMamba为骨干网络,配置VMamba的预训练权重路径,配置HybridEncoder输入特征图的通道数。
四、可能遇到的bug
问题一
assert selective_scan_backend in [None, "oflex", "mamba", "torch"]关键字语句报错
解决办法:
安装 mamba-ssm 并将vmamba.py上下文中的所有“core”替换为“oflex”
问题二
sig_key = ,报错
解决办法:
pip uninstall triton
pip install triton==2.3.0