dijkstra算法c语言实现

本文详细介绍了Dijkstra算法的实现过程,以MGraphG为例,通过代码展示了如何使用该算法寻找图中两点之间的最短路径。从初始化距离和访问标记,到遍历节点更新最短路径,最后输出结果,一步步揭示了算法核心。
摘要由CSDN通过智能技术生成
/**
 *
 * dijkstra算法*/
void dijkstra(MGraph G){
    int count=0;
    int dist[MaxVertexNum];
    int path[MaxVertexNum];
    int visit[MaxVertexNum];
    visit[0]=1;
    path[0]=0;
    dist[0]=0;
    count++;
    for (int i = 1; i <G.vexnum ; ++i) {
        visit[i]=0;
        path[i]=0;
        dist[i]=G.Edge[0][i];
    }
    while (count< G.vexnum){
        int min=INF;
        int p;
        for (int i = 1; i < G.vexnum; ++i) {
            if (visit[i] == 0 && dist[i] < min){
                    min=dist[i];
                    p=i;
            }

        }
        visit[p]=1;
        count++;
        for (int i = 1; i < G.vexnum; i++) {
            if (visit[i] == 0 && (dist[p] + G.Edge[p][i] < dist[i])){
                    dist[i]=dist[p]+G.Edge[p][i];
                    path[i]=p;
            }

        }

    }
    for (int i = 0; i < G.vexnum; ++i) {
        printf("%d ",dist[i]);

    }

    for (int i = 0; i < G.vexnum; ++i) {
        printf("%d ",path[i]);

    }


}


int main() {
    MGraph G;
    for (int i = 0; i < 6; i++) {
        for (int j = 0; j < 6; j++){
            if(i==j){
                G.Edge[i][j] = 0;
            } else{
                G.Edge[i][j] = INF;
            }

        }

    }
    G.vexnum = 6;

    G.Edge[0][4] =4;
    G.Edge[0][1] =5;
    G.Edge[1][3] =9;
    G.Edge[1][2] =2;
    G.Edge[2][4] =6;
    G.Edge[3][0] =2;
    G.Edge[4][3] =7;
    G.Edge[4][1] =6;
    G.Edge[4][5] =5;
    G.Edge[5][2] =2;
    dijkstra(G);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值