逆元的两种求法

逆元

逆元是什么网上有很多资料就不多阐述了.
!主要用于把除法变成乘法!
结论:
a/b%mod=a*(b的逆元)%mod.
比如说一个组合数若是除数或者被除数太大精度就会出问题.这时候就需要通过逆元把除法转换为乘法

费马小定理及欧拉定理

费马小定理: 当mod为素数时a^(mod-1)%mod=1.
左右两边除a变成a^(mod-2)%mod = a^-1.
所以a的逆元就是a^(mod-2).

const int mod=10007;
ll fastpow(ll a,ll b){
	if(a==1)return a;
	ll ans=1;
	for(;b;b>>=1){
		if(b&1)ans=ans*a%mod;
		a=a*a%mod;
	}
	return ans;
}

ll Inv(ll a){
	return fastpow(a,mod-2);
}

欧拉定理:当a、mod互素,则有a^φ( mod)%mod=1(费马小定理的一般形式)
且a^φ( mod)*a%mod=1
故:a^φ( mod)%mod=a^-1
结论:逆元是a^(φ(mod)−1)

const int mod=10007;
ll fastpow(ll a,ll b){
	if(a==1)return a;
	ll ans=1;
	for(;b;b>>=1){
		if(b&1)ans=ans*a%mod;
		a=a*a%mod;
	}
	return ans;
}

ll phi(ll n){
	ll ans=n;
	for(int i=2;i<=sqrt(n);i++)
		if(n % i == 0){
			ans = ans / i * (i-1);
			while(n%i==0)n/=i;
		}
	if(n>1)ans=ans/n*(n-1);
	return ans;
}

ll Inv(ll a){
	return fastpow(a,phi(mod)-1);
}

扩展欧几里得算法

网上抄的:

LL exgcd(LL a,LL b,LL &x,LL &y)//扩展欧几里得算法 
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    LL ret=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return ret;
}
LL getInv(int a,int mod)//求a在mod下的逆元,不存在逆元返回-1 
{
    LL x,y;
    LL d=exgcd(a,mod,x,y);
    return d==1?(x%mod+mod)%mod:-1;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值