AcWing 802. 区间和

这是AcWing y总算法基础课中对离散化的模板题,由于这个题目用到了之前和前缀和和二分,并且思路和做法是有点绕的,所以需要不少的篇幅来写题解和解题

原题链接如下:
AcWing 802. 区间和

首先解题之前,建议小伙伴们一定要多看几遍题目,理解透彻,同时可以初步想一个思路,注意一下这个题目中的数轴的长度,各种变量的取值范围大小,你就会发现,这个题目题解多是肯定,但是离散化是一个比较理想的解题方向

首先在这一题中,由于我们的数轴长度特别大,而且数轴上所有位置的默认初始值都是0的原因,我们可以看题目中执行的加c操作,其实次数并不多,而且加c的位置的范围也相对于数轴本身长度来说是很小的,所以我们将这题离散的一些下标位置,利用他们的相对大小关系进行聚拢,从而降低我们算法的时间和空间复杂度,特别是空间,因为我们不可能开一个长度为1e9的数组,不管是普通数组还是vector动态数组,那都是不可行的,甚至是无法实现的,所以我们就采用了课上的离散化这个知识点来将这道题目数据的存储结构进行优化,从而达到更好的解题

这道题中有两种操作,一个是在x位置上加c操作,我们简称add操作;一个是询问操作,每次询问会给出两个下标lr,我们简称query操作。而无论是这两个操作中的哪一个,他们涉及到的下标都是他们那个很大范围定义域中的某个值,通俗来说就是特别稀疏,若任其这样稀疏的在这么长的数轴上分布然后我们去解题的话,不是一个明智的做法。回过头来,无论是add下标x还是query的下标l和r,他们都是同种类型的,都属于下标,我们不妨利用这些下标他们的相对大小关系,把他们先全部存在一起(存在vector容器alls中),排好顺序(排序),来把他们按照大小顺序来映射成连续的一串数字(映射的结果也就是他们这个alls数组经过排序和去重处理之后的下标),然后上述映射的结果作为一个存放每次加c的a数组的下标(因为其他位置不经过加c操作的话,永远都是0,对我们这题中要求求出[l,r]之间之和的结果没有任何影响),这个a数组只需要存放每次加c操作的数值c,在a数组中的下标即为上述映射的结果(这些下标可能是离散的,因为alls数组中可能add操作的下标x和query操作的下标l和r是交替出现的,但这没关系,a数组其他没有经过add操作的位置就默认为0,并不影响接下来用前缀和求最后结果的过程)

我们将每次add操作的一对x和c,作为一个数对,存储在vector数组当中,以便于我们之后来初始化a数组。如何去找每次add操作中下标x在alls数组中对应的下标呢?(也就是映射结果),这时候我们采用的就是之前练习过的二分法,我们自己动手默写一下二分的模板,作为一个find函数即可

query操作也是同样如此,每次的l和r作为一个数对存储起来,每次的l和r的映射结果也是由二分法来得到,然后二分法得到的这个结果,就是在a数组中的下标,我们利用这个新的下标来对数组a进行前缀和的操作,就能求出区间[l,r]之间的和了

这里引用了别的大佬的题解中对整个题解中涉及到的数组一个图解,同时也图解了为什么需要去重

区间和题解.png

本人目前也处于算法学习的最底层,所以讲得特别冗杂看起来,但也算是一种比较详细的思路过程的解释,如果能先好好理解完几遍题目,然后耐心看完我这段文字,我相信也能有一个浅薄的解题理解

当然,有大佬的题解,简洁,而且我的图就引用自他那里的:AcWing 802. 区间和分析过程 - AcWing

//离散化
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int n,m;
const int N = 300010;
//设置一个离散数据连续化之后存储add操作数据的数组a[N],以及其前缀和数组s[N]
int a[N],s[N];

//定义一个vector数组把所有题目中操作涉及到的下标存储进去
vector<int>alls;

//定义一个数对类型来表示每次的加c操作和询问
typedef pair<int,int> PII;
//设置一个vector数组来存储每次的加c操作和询问操作的数对(数对作为一个基本元素,vector数组是存储若干个这样的数对)
vector<PII>add,query;

//默写一下二分模板 待会要用
int find(int x)
{
    int l = 0,r = alls.size()-1;
    while(l<r)
    {
        int mid = l + r >> 1;
        if(alls[mid]>=x)r = mid;
        else l = mid+1;
    }
    return r+1;//也可以返回r r+1是将数据离散化成1,2,3,4...n(从1开始,而不是从0开始)
}

int main()
{
    cin>>n>>m;
    //现在开始循环执行n次加c操作,初始化add和alls数组
    for(int i = 0;i<n;i++)
    {
        int x,c;
        cin>>x>>c;
        add.push_back({x,c});
        alls.push_back(x);
    }
    //现在开始循环执行m次询问操作,初始化query和alls数组
    for(int i = 0;i<m;i++)
    {
        int l,r;
        cin>>l>>r;
        query.push_back({l,r});
        alls.push_back(l);
        alls.push_back(r);
    }
    //然后我们开始对alls数组进行排序和去重
    //这里补充一下,alls数组存在的意义其实为了将下标排序,看每次的l和r之间有哪些x是在里面的
    //这些离散的x在连续化映射之后得到的值就会
    //作为我们之后利用a[N]前缀和求和的下标依据
    
    //排序
    sort(alls.begin(),alls.end());
    //去重
    alls.erase(unique(alls.begin(),alls.end()),alls.end());//unique函数是ctl中自带的函数
    
    //现在我们开始处理并统计数轴中经过add操作之后不是0的那些部分
    //也就是初始化a数组,把原来数轴中不为0的那些位置上的数字统计过来
    //存储的下标x依据就是利用二分来寻找其在alls数组中的相对位置
    for(auto item:add)
    {
        int x = find(item.first);
        a[x] += item.second;
    }
    //预处理前缀和
    //这一步是用来求最后[l,r]区间的依据
    for(int i = 1;i<=alls.size();i++)s[i] = s[i-1]+a[i];
    //处理询问
    for(auto item:query)
    {
        //item.first和item.second其实就是原来键盘中输入的每次询问的l和r
        //下面的l和r是经过映射之后的下标
        int l = find(item.first),r = find(item.second);
        cout<<s[r]-s[l-1]<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值