ZJYYCOJ-最大奇数和

题目链接: http://acm.oinsm.com/problem.php?cid=1031&pid=10

在这里插入图片描述

思路

可模拟可贪心

  1. 首先,我们能想到,既然要和为奇数,那么必然是奇数个奇数相加,偶数随意!(QAQ… 这点比赛考虑到位了!
  2. 其次必然要剪枝一下,或者再贪一下,(这个,比赛的时候我没考虑到位,超时n发,原因是我做了重复的相加操作,这里我没用前缀和优化一下即可
  3. 然后我们可以再贪一下,标记下,偶数哪一段从哪里开始就变负数了,对于负数我们可以直接抛弃掉!(当然奇数也可以这样贪一下,但是可能还得考虑再仔细一点!
  4. 到此为止,贪的也差不多了,优化的也差不多了!刚好够AC(hahahaha
  5. 对了还有最后一点,这题写了最多可以取k个,不是就取k个,这个我到比赛结束都没发现这个问题(QAQ…

代码

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const long long INF = 1e16 + 7;
bool cmp(long long a, long long b) {
    return a > b;
}
typedef long long ll;
ll anum[MAXN], bnum[MAXN];
int main()
{
    ios::sync_with_stdio(false);
    int n, m;
    while(cin >> n >> m) {
        int aa = 0, bb = 0;
        for(int i = 1; i <= n; i++){
            ll k;
            cin >> k;
            if(k % 2) anum[aa++] = k;
            else bnum[bb++] = k;
        }
        sort(anum, anum + aa, cmp);
        sort(bnum, bnum + bb, cmp);
        int tmpa = aa, tmpb = bb;
        // 求一下前缀和
        for(int i = 1; i < aa; i++) {
            anum[i] += anum[i - 1];
        }
        // 这里我们贪一下,出现负数的直接丢了
        for(int i = 1; i < bb; i++) {
            if(bnum[i] < 0) {
                tmpb = i;
                break;
            }
            bnum[i] += bnum[i - 1];
        }
        // 如果第一个偶数就为负数,那么偶数就没必要加了
        if(bnum[0] < 0) tmpb = 0;
        long long ans = anum[0];
        for(int i = 1; i <= m && i <= tmpa; i += 2) {
            ll tmp = -1;
            if((m - i) >= tmpb) {
                if(tmpb != 0) {
                    tmp = anum[i - 1] + bnum[tmpb - 1];
                }
                else {
                    tmp = anum[i - 1];
                }
            }
            else {
                tmp = anum[i - 1] + bnum[m - i - 1];
            }
            ans = max(ans, tmp);
        }
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值