船舶轨迹预测

随着全球化的加深,船舶交通管理面临挑战,AIS数据提供了解决方案。通过对AIS数据的分析,可以预测船舶轨迹,降低碰撞风险。文章介绍了如何使用LSTM模型进行训练,包括数据集划分、模型定义和主函数实现,以提升船舶航行安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经济全球化程度日益增大,各国经济贸易往来频繁带动航运行业欣欣向荣,海域航道以及港口水域的负载增加,造成船舶交通阻塞、船舶碰撞事件事故频发等问题。因此,准确获取船舶航行实时动态信息,及时发现船舶异常轨迹情况并提前预测船舶的航行运动状态,成为国内外学者的研究热点。

随着AIS系统的普及,现如今收到的AIS数据远超预期,我国AIS系统大概每天收到AIS实时报文一亿条,数据量爆炸的同时蕴含很多对船舶轨迹预测和减少船舶碰撞有用的信息。AIS发送的信息包括水上移动通信业务标识码(Maritime Mobile Service identify,MMSI) ,船舶经纬度、船舶的对地航向和对地航速等。与雷达、声纳或闭路电视等传统海事方法相比,AIS具有许多优势,首先AIS消息几乎以实时方式提供了其主机的丰富信息,其次AIS数据可以在很长的距离内发送和接收(从机载收发器的20海里到卫星接收器的上千海里),且AIS受海洋和天气等外部因素的影响较小,对AIS数据的有效利用能对船舶轨迹预测有非常重要的现实意义。

参考如下

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值