朴素贝叶斯算法

本文介绍了朴素贝叶斯算法的基础,包括概率概念、联合概率和条件概率,重点阐述了朴素贝叶斯公式及其在分类中的应用。通过实例说明了拉普拉斯平滑在解决概率为0问题上的作用,并提到了sklearn库中的MultinomialNB实现,讨论了该算法的优缺点。
摘要由CSDN通过智能技术生成

概率基础

朴素贝叶斯算法在判断某文章或物品属于哪一类别时使用概率的方法,哪种类别的概率大,就判定其为哪种类别

联合概率

联合概率:包含多个条件,且所有条件同时成立的概率

记作: P(A, B)

条件概率

条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率

记作:𝑃(𝐴|𝐵)

特性:P(A1,A2|B) = P(A1|B)P(A2|B)
注意:此条件概率的成立,是由于A1,A2相互独立的结果

朴素贝叶斯公式

 𝑃(𝐶):每个文档类别的概率(某文档类别词数/总文档词数)

 𝑃(𝐹1,𝐹2,…)     预测文档中每个词的概率 

举个栗子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值