吴恩达《Machine Learning》

1 线性回归

1-1. 监督学习Supervised Learning

        数据有标签

1-2 无监督学习Unsupervised Learning 

        数据无标签

2. 单变量线性回归Linear Regression with One Variable

        回归问题:根据之前的数据,预测出一个准确的输出值。

        分类问题:预测离散的输出值。

3. 代价函数cost function

        代价函数也称之为平方误差函数平方误差代价函数

import numpy as np

def computeCost(X,y,theta):
  inner = np.power(((X * theta.T) - y), 2)  # 求解每个平方项
  return np.sum(inner) / (2 / len(X))   # 求和再除以2*len(X)

4. 梯度下降Gradient Descent

        梯度下降是一个用来求函数最小值的算法

2 逻辑回归

Python代码实现sigmod激活函数:

import numpy as np

def sigmod(z):
  return 1 / (1 + np.exp(-z))

正则化:正则化技术主要是为了解决过拟合的问题。过拟合指的是:对样本数据具有很好的判断能力,但是对新的数据预测能力很差。

3 神经网络之前向传播

4 神经网络之反向传播

5 偏差与方差

6 支持向量机

7 kmeansPCA

8 异常检测、推荐系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值