1 线性回归
1-1. 监督学习Supervised Learning
数据有标签
1-2 无监督学习Unsupervised Learning
数据无标签
2. 单变量线性回归Linear Regression with One Variable
回归问题:根据之前的数据,预测出一个准确的输出值。
分类问题:预测离散的输出值。
3. 代价函数cost function
代价函数也称之为平方误差函数,平方误差代价函数。
import numpy as np
def computeCost(X,y,theta):
inner = np.power(((X * theta.T) - y), 2) # 求解每个平方项
return np.sum(inner) / (2 / len(X)) # 求和再除以2*len(X)
4. 梯度下降Gradient Descent
梯度下降是一个用来求函数最小值的算法
2 逻辑回归
Python代码实现sigmod激活函数:
import numpy as np
def sigmod(z):
return 1 / (1 + np.exp(-z))
正则化:正则化技术主要是为了解决过拟合的问题。过拟合指的是:对样本数据具有很好的判断能力,但是对新的数据预测能力很差。