18年真题笔记

第一题

问题:第几天

2000年的1月1日,是那一年的第1天。那么,2000年的5月4日,是那一年的第几天?

代码:

#include
using namespace std;
int main()
{
int m,d=0;
for(m=1;m<=5;m++)
{
if(m%21&&m!=5) d+=31;
if(m
2) d+=29;
if(m%20&&m!=2) d+=30;
if(m
5) d+=4;
}
cout<<d;
return 0;
}

第二题

问题:明码

汉字的字形存在于字库中,即便在今天,16点阵的字库也仍然使用广泛。16点阵的
字库把每个汉字看成是16x16个像素信息。并把这些信息记录在字节中。一个字节可
以存储8位信息,用32个字节就可以存一个汉字的字形了。把每个字节转为2进制表
示,1表示墨迹,0表示底色。每行2个字节,一共16行,布局是:
第1字节,第2字节
第3字节,第4字节

第31字节, 第32字节
这道题目是给你一段多个汉字组成的信息,每个汉字用32个字节表示,这里给出了
字节作为有符号整数的值。题目的要求隐藏在这些信息中。你的任务是复原这些汉
字的字形,从中看出题目的要求,并根据要求填写答案。
#include int main(){ printf("%d",31+29+31+30+4); return 0; } 12345
这段信息是(一共10个汉字):
4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0
16 64 16 64 34 68 127 126 66 -124 67 4 66 4 66 -124 126 100 66 36 66 4 66 4 66
4 126 4 66 40 0 16
4 0 4 0 4 0 4 32 -1 -16 4 32 4 32 4 32 4 32 4 32 8 32 8 32 16 34 16 34 32 30 -64 0
0 -128 64 -128 48 -128 17 8 1 -4 2 8 8 80 16 64 32 64 -32 64 32 -96 32 -96 33 16
34 8 36 14 40 4
4 0 3 0 1 0 0 4 -1 -2 4 0 4 16 7 -8 4 16 4 16 4 16 8 16 8 16 16 16 32 -96 64 64
16 64 20 72 62 -4 73 32 5 16 1 0 63 -8 1 0 -1 -2 0 64 0 80 63 -8 8 64 4 64 1 64 0
-128
0 16 63 -8 1 0 1 0 1 0 1 4 -1 -2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 5 0 2 0
2 0 2 0 7 -16 8 32 24 64 37 -128 2 -128 12 -128 113 -4 2 8 12 16 18 32 33 -64 1 0
14 0 112 0
1 0 1 0 1 0 9 32 9 16 17 12 17 4 33 16 65 16 1 32 1 64 0 -128 1 0 2 0 12 0 112 0
0 0 0 0 7 -16 24 24 48 12 56 12 0 56 0 -32 0 -64 0 -128 0 0 0 0 1 -128 3 -64 1 -128
0 0

代码:

#include
#include
#include
#include
#include
#include
using namespace std;
int main()
{
int cnt = 0;
int a[320];
ifstream file(“DATA.txt”);
for(int i = 0; i < 320; i++)
file >> a[cnt++];
for (int i = 0; i < 320; i++)
{
bitset<8> v(a[i]);
string s = v.to_string();
for (int j = 0; j < 8; j++)
{
if(s[j] == ‘1’) s[j] = ‘#’;
else s[j] = ’ ';
}
cout << s;
if ((i + 1) % 2 == 0) cout << endl;
}

return 0;

}

第三题

问题:乘积尾零

如下的10行数据,每行有10个整数,请你求出它们的乘积的末尾有多少个零?
5650 4542 3554 473 946 4114 3871 9073 90 4329
2758 7949 6113 5659 5245 7432 3051 4434 6704 3594
9937 1173 6866 3397 4759 7557 3070 2287 1453 9899
1486 5722 3135 1170 4014 5510 5120 729 2880 9019
2049 698 4582 4346 4427 646 9742 7340 1230 7683
5693 7015 6887 7381 4172 4341 2909 2027 7355 5649
6701 6645 1671 5978 2704 9926 295 3125 3878 6785
} }// 九的九次方是多少? int ans = 1; for(int i=0; i<9; i++) ans*=9; cout << ans << endl; return 0; } 262728293031323334 求反码取巧操作 比如八位二进制 表示的范围就是 [-127,128],第一位是符号位,所以就只有2的8次 方256个数又要分成正负数。 负数 x 的二进制就是 第一位符号位为1 其余为等于 (128+x)这个数的二进制 123 >> 右移位操作 移一位是 除2的1次方 移2位是除2的2次方。 & 与运算 二进制位挨个比较 同样的返回1 & 与运算 一般是 & 1 就获得到这个数的二进制的最后一位了,最后一位是1就是奇 数,是2就是偶数 所以求一个数二进制的每一个数可以用 这个数 右移位 然后 & 1 获取他的最后一位 上的数值。挨个获取就能获取到所有位上的数值了。 12345
2066 4247 4800 1578 6652 4616 1113 6205 3264 2915
3966 5291 2904 1285 2193 1428 2265 8730 9436 7074
689 5510 8243 6114 337 4096 8199 7313 3685 211

代码:

#include<stdio.h>
#include<stdlib.h>
#define MIN(a,b) (a<b?(a):(b))
//#define HOST
int main(int argc,char **argv)
{
#ifdef HOST
freopen(“input.txt”,“r”,stdin);
#endif
int num,cnt2=0,cnt5=0;
while(scanf("%d",&num)!=EOF)
{
while(num%20)
num/=2,cnt2++;
while(num%5
0)
num/=5,cnt5++;
}
cnt2=MIN(cnt2,cnt5);
printf("%d\n",cnt2);
return EXIT_SUCCESS;
}

第四题

问题:测试次数

x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。各大
厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,
并且评定出一个耐摔指数来,之后才允许上市流通。x星球有很多高耸入云的高塔,
刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,
他们的第一层不是地面,而是相当于我们的2楼。
#include int cnt2,cnt5,temp,x; int main() { for(int i=0; i<100; i++) { scanf("%d",&x); temp = x; while(temp % 2 == 0) { temp /= 2; cnt2++; }temp = x; while(temp % 5 == 0) { temp /= 5; cnt5++; } }int ans = cnt2<cnt5?cnt2:cnt5; printf("%d\n",ans); return 0; } 12345678910111213141516171819202122
如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。特别地,如
果手机从第1层扔下去就坏了,则耐摔指数=0。如果到了塔的最高层第n层扔没摔
坏,则耐摔指数=n
为了减少测试次数,从每个厂家抽样3部手机参加测试。某次测试的塔高为1000
层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手
机的耐摔指数呢?
请填写这个最多测试次数。

代码:

public class Main {

public static void main(String[] args){
	int high = 1000,phoneNum = 3;
	int[][] dp = new int[1010][10];
	
	//边界
	for(int i=1;i<=high;i++){
		dp[i][1] = i;
	}
	
	for(int i=1;i<=phoneNum;i++){
		dp[1][i] = 1;
	}
	
	//状态转移方程
	for(int i=2;i<=phoneNum;i++){
		for(int j=2;j<=high;j++){
			int minimal = 1000000000;
			
			//从k=2层开始,找到k=2到j层取最小值
			for(int k=2;k<=j;k++){
				minimal = min(minimal,1+max(dp[k-1][i-1],dp[j-k][i]));
			}
			
			dp[j][i] = minimal;
		}
	}
	
	//输出
	System.out.println(dp[high][phoneNum]);
}


private static int min(int a,int b){
	if(a<=b){
		return a;
	}else{
		return b;
	}
}

private static int max(int a,int b){
	if(a>=b){
		return a;
	}else{
		return b;
	}
}

}

第五题

问题:递增三元组

给定三个整数数组
A = [A1, A2, … AN],
B = [B1, B2, … BN],
C = [C1, C2, … CN],
请你统计有多少个三元组(i, j, k) 满足:

  1. 1 <= i, j, k <= N
  2. Ai < Bj < Ck
    【输入格式】
    第一行包含一个整数N。
    第二行包含N个整数A1, A2, … AN。
    第三行包含N个整数B1, B2, … BN。
    第四行包含N个整数C1, C2, … CN。
    对于30%的数据,1 <= N <= 100
    对于60%的数据,1 <= N <= 1000
    对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
    【输出格式】
    一个整数表示答案
    【样例输入】
    3
    1 1 1
    2 2 2
    }f3[i] = ans; }printf("%d",f3[1000]); return 0; } 323334353637
    3 3 3
    【样例输出】
    27

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100005];
int b[100005];
int c[100005];

int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(int i=0;i<n;i++)
{
scanf("%d",&b[i]);
}
for(int i=0;i<n;i++)
{
scanf("%d",&c[i]);
}
sort(a,a+n);
sort(b,b+n);
sort(c,c+n);
ll aa=0;//a数组标记
ll cc=0;//c数组标记
ll ans=0;
for(int i=0;i<n;i++)
{
// cout<<"----ai="<<aa<<" cc="<<cc<<endl;
while(a[aa]<b[i]&&aa<n)//注意条件,不能等于
aa++;
while(c[cc]<=b[i]&&cc<n)//同上
cc++;
// cout<<“ai=”<<aa<<" cc="<<cc<<endl;
ans+=aa*(n-cc);
}
cout<<ans<<endl;
}

第六题

问题:螺旋折线

在这里插入图片描述
如图所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的
长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
【输入格式】
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
【输出格式】
输出dis(X, Y)
【样例输入】
0 1
【样例输出】
3

代码:

int dis(int x, int y)
{
int r; // 正方形边长的一半
if (x == y && x >= 0)return 4 * x * x; // 1. y=x线上,x非负
if (y > 0) // 2. x轴上方的,延长到右上角
{
r = abs(x) > abs(y) ? abs(x) : abs(y);
return 4 * r * r - abs(x - r) - abs(y - r); // 减去延长部分
}

if (y == 0) // 3. x轴上的(除原点)
{
	r = abs(x);
	if (x > 0)return 4 * r * r + r;
	return 4 * r * r - 3 * r;
}

if (y < 0) // 4. x轴下方的,分为左侧竖直(有倒钩)和右下(无倒钩)
{
	if (y <= x + 1) // 4.1 右下(无倒钩)
	{
		if (y == x + 1)r = 0 - y;
		else r = abs(x) > abs(y) ? abs(x) : abs(y);
		return 4 * r * r + abs(x - r) + abs(y - r);
	}
	if (y > x + 1) // 4.2 左侧竖直(有倒钩)
	{
		return 4 * r * r + (2 * r) + (2 * r + 1) + (y - (-r));
	}
}

}

第七题

问题:日志统计

小明维护着一个程序员论坛。现在他收集了一份"点赞"日志,日志共有N行。其中每
一行的格式是:
ts id
表示在ts时刻编号id的帖子收到一个"赞"。
现在小明想统计有哪些帖子曾经是"热帖"。如果一个帖子曾在任意一个长度为D的时
间段内收到不少于K个赞,小明就认为这个帖子曾是"热帖"。
具体来说,如果存在某个时刻T满足该帖在[T, T+D)这段时间内(注意是左闭右开区间)
收到不少于K个赞,该帖就曾是"热帖"。
给定日志,请你帮助小明统计出所有曾是"热帖"的帖子编号。
【输入格式】
第一行包含三个整数N、D和K。
以下N行每行一条日志,包含两个整数ts和id。
对于50%的数据,1 <= K <= N <= 1000
对于100%的数据,1 <= K <= N <= 100000 0 <= ts <= 100000 0 <= id <= 100000
【输出格式】
按从小到大的顺序输出热帖id。每个id一行。
【输入样例】
7 10 2
0 1
0 10
10 10
10 1
9 1
100 3
100 3
【输出样例】
13

代码:

#include
#include
using namespace std;

#define x first
#define y second

const int N = 1e5 + 10;

typedef pair<int,int> PII;

PII q[N];

int cnt[N];
bool st[N];

int n,d,k;

int main(){

cin >> n >> d >> k;

for(int i = 0;i < n;i++) cin >> q[i].x >> q[i].y;

sort(q,q+n);

for(int i = 0,j = 0;i < n;i++){
cnt[q[i].y] ++;
while(q[i].x - q[j].x >= d){
cnt[q[j].y] --;
j ++;
}

  if(cnt[q[i].y] >= k) st[q[i].y] = true;

}

for(int i = 0;i <= 100000;i++) if(st[i]) cout << i << endl;

return 0;

}

第八题

问题:全球变暖

你有一张某海域NxN像素的照片,".“表示海洋、”#"表示陆地,如下所示:

.##…
.##…
…##.
…####.
…###.

其中"上下左右"四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有2座岛
屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围
会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有
海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:




…#…


请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
【输入格式】
第一行包含一个整数N。 (1 <= N <= 1000)
以下N行N列代表一张海域照片。
照片保证第1行、第1列、第N行、第N列的像素都是海洋。
【输出格式】
一个整数表示答案。
【输入样例】
7

.##…
.##…
…##.
…####.
…###.

【输出样例】
1

代码:

#include <stdio.h>
#include <string.h>
char s[1002][1002];
void zx(long int x,long int y)
{
if(s[x][y]!=’#’)return;
s[x][y]=‘4’;
zx(x+1,y);
zx(x-1,y);
zx(x,y-1);
zx(x,y+1);

}
void zx2(long int x,long int y)
{
if(s[x][y]>=‘4’&&s[x][y]<=‘9’)//为岛屿则全部淹没(不管这个大岛最后有多少小岛出来)
{
s[x][y]=’.’;
zx2(x+1,y);
zx2(x-1,y);
zx2(x,y-1);
zx2(x,y+1);
}
return;
}
int main()
{long int i,n,j,ans=0,sum=0;

scanf("%ld",&n);

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
while(1)
{
scanf("%c",&s[i][j]);
if(s[i][j]’.’||s[i][j]’#’)break;
}
}
for(i=1;i<=n;i++)//找寻多少块岛屿;
for(j=1;j<=n;j++)
if(s[i][j]’#’)
{
zx(i,j); //将同一块岛屿 标记防重复
ans++;}
for(i=1;i<=n;i++)//找寻那些块岛屿不会被淹;
for(j=1;j<=n;j++)
if(s[i][j]>=‘4’&&s[i][j]<=‘9’)
{ s[i-1][j]+=1;
s[i+1][j]+=1;
s[i][j-1]+=1;
s[i][j+1]+=1;
}
for(i=1;i<=n;i++)s[1][i]++,s[n][i]++,s[i][1]++,s[i][n]++;//处理边界
for(i=1;i<=n;i++)//找寻剩多少块岛屿;
for(j=1;j<=n;j++)
if(s[i][j]
‘8’)
{
zx2(i,j); //将同一块岛屿 标记防重复
sum++;}
printf("%ld\n",ans-sum);
return 0;
}

第九题

问题:乘积最大

给定N个整数A1, A2, … AN。请你从中选出K个数,使其乘积最大。
}if(0<=x && x<n && 0<=y && y<n && map[x][y] == ‘#’ && vis[x][y] == 0) { q.push({x,y}); // 吧周围的 # 号加如队列中并且标记 访问 vis[x][y] = 1; } }if(swed) cnt2++; // 淹没的数量加一 }// #号和淹没的数量相等的时候这块岛屿就没了 if(cnt1 == cnt2) ans++; }int main() { scanf("%d",&n); for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { scanf("%c",&map[i][j]); } }for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { if(map[i][j] == ‘#’ && vis[i][j] == 0) { bfs(i,j); } } }printf("%d",ans); return 0; } 293031323334353637383940414243444546474849505152535455565758
请你求出最大的乘积,由于乘积可能超出整型范围,你只需输出乘积除以
1000000009的余数。
注意,如果X<0, 我们定义X除以1000000009的余数是负(-X)除以1000000009的余
数。
即:0-((0-x) % 1000000009)
【输入格式】
第一行包含两个整数N和K。
以下N行每行一个整数Ai。
对于40%的数据,1 <= K <= N <= 100
对于60%的数据,1 <= K <= 1000
对于100%的数据,1 <= K <= N <= 100000 -100000 <= Ai <= 100000
【输出格式】
一个整数,表示答案。
【输入样例】
5 3
-100000
-10000
2
100000
10000
【输出样例】
999100009
再例如:
【输入样例】
5 3
-100000
-100000
-2
-100000
-100000
【输出样例】
-999999829

代码:

#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000009
using namespace std;
typedef long long ll;
const int maxn = 1e6+5;
const double esp = 1e-7;
const int ff = 0x3f3f3f3f;
map<int,int>::iterator it;

struct node
{
ll x;
int f;
}a[maxn];

int n,k;

bool cmp(node x,node y)
{
return x.x> y.x;
}

ll solve(int o)
{
ll ans = 1;
int cnt = 0;
if(o == 0)//从前往后乘
{
for(int i = 1;i<= k;i++)
{
ans = (ansa[i].x)%mod;
if(a[i].f == 1)
cnt++;
}
}
else//从后往前乘
{
for(int i = n;i> n-k;i–)
{
ans = (ans
a[i].x)%mod;
if(a[i].f == 1)
cnt++;
}
}

if(cnt&1)
	return ans*(-1);
return ans;

}

int main()
{
cin>>n>>k;

int flag = 0;
int cnt = 0;
for(int i = 1;i<= n;i++)
{
	scanf("%lld",&a[i].x);
	if(a[i].x< 0)
	{
		a[i].f = 1;
		a[i].x = -a[i].x;
		cnt++;
	}
	else if(a[i].x> 0)
		a[i].f = 0;
	else
	{
		i--;n--;//我们不记录0,0只做迫不得已的选择 
		flag = 1;
	}
}

sort(a+1,a+n+1,cmp);

ll ans = 0;

if(n< k)//如果必须选0 
	ans = 0;
else if(cnt == n)//如果都为负数 
{
	if(k&1)
		ans = solve(1);
	else
		ans = solve(0);
}
else if(cnt == 0)//如果都为正数 
	ans = solve(0);
else
{
	int tmp = 0;
	for(int i = 1;i<= k;i++)
		if(a[i].f == 1)
			tmp++;
		
	if(tmp%2 == 0)//如果前k大的数有偶数个负数 
		ans = solve(0);
	else
	{
		ans = -1;//将其设置为负数 
		//尝试将前k个里面一个绝对值最小负数和后面最大正数交换 
		int p = -1,q = -1;
		for(int i = k+1;i<= n;i++)
			if(a[i].f == 0)
			{
				q = i;
				break;
			}
		for(int i = k;i>= 1;i--)
			if(a[i].f == 1)
			{
				p = i;
				break;
			}
		
		if(p!= -1&&q!= -1)
		{
			swap(a[p],a[q]);
			ans = solve(0);
			swap(a[p],a[q]);
		}
		
		//尝试将前k个里面一个最小正数和后面绝对值最大正数交换
		p = -1,q = -1;
		for(int i = k+1;i<= n;i++)
			if(a[i].f == 1)
			{
				q = i;
				break;
			}
		for(int i = k;i>= 1;i--)
			if(a[i].f == 0)
			{
				p = i;
				break;
			}
		
		if(p!= -1&&q!= -1)
		{
			swap(a[p],a[q]);
			ans = max(ans,solve(0));
			swap(a[p],a[q]);
		}
		
		//假如结果仍然小于0,我们只能尝试从最后往前乘了 
		if(ans< 0)
			ans = solve(1); 
	}
}

if(ans< 0)
	if(flag)//这时候0派上用场了 
	{
		cout<<0<<endl;
		return 0;
	}
cout<<ans<<endl;

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值