2017蓝桥杯b组笔记

第一题 购物单

标题: 购物单

小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。

这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。

取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。

以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。

**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折

需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。

请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
问题概括:购物清单算总价…
代码

#include < iostream >
using namespace std;
int main()
{
	double x,y;
	double sum=0;
	for(int i=0;i<54;i++)
	{
		cin>>x>>y;
		sum+=x*y;
	}
	cout<<sum<<endl;
 }

笔记
emm,挺奇怪一题…

第二题 等差素数列

标题:等差素数列

2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。

2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:

长度为10的等差素数列,其公差最小值是多少?

注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
问题概括:查找个数为10的等差素数列,输出公差
代码

#include<stdio.h>
int su[20000]={0};
int shai[20000]={1,1,0};
void p()
{
    int k=0;
    for(int i=0;i<10000;i++)
    {
        if(shai[i])
        {
            continue;
        }
        for(int j=i;j*i<10000;j++)
        {
            shai[i*j]=1;
        }
        su[k++]=i;
    }
}
int suu()
{
    int i,j,k;
    for(i=0;i<10000;i++)
    {
        int kk=su[i];
        for(k=1;k<1000;k++)
        {
         
            for(j=1;j<10;j++)
            {
                if(shai[kk+j*k])
                {
                    break;
                }
            }
             if(j>=10)
             {
                 return k;
             } 
        }
    }
}
int main()
{
    p();
    int a=suu();
    printf("%d\n",a);
    return 0;
}

第三题 承压计算

标题:承压计算

X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。

每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。

                         7 
                        5 8 
                       7 8 8 
                      9 2 7 2 
                     8 1 4 9 1 
                    8 1 8 8 4 1 
                   7 9 6 1 4 5 4 
                  5 6 5 5 6 9 5 6 
                 5 5 4 7 9 3 5 5 1 
                7 5 7 9 7 4 7 3 3 1 
               4 6 4 5 5 8 8 3 2 4 3 
              1 1 3 3 1 6 6 5 5 4 4 2 
             9 9 9 2 1 9 1 9 2 9 5 7 9 
            4 3 3 7 7 9 3 6 1 3 8 8 3 7 
           3 6 8 1 5 3 9 5 8 3 8 1 8 3 3 
          8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9 
         8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4 
        2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9 
       7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6 
      9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3 
     5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9 
    6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4 
   2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4 
  7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6 
 1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3 
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8 

7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。

假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。

工作人员发现,其中读数最小的电子秤的示数为:2086458231

请你推算出:读数最大的电子秤的示数为多少?

注意:需要提交的是一个整数,不要填写任何多余的内容。
解题思路
将问题化作二维数组求和,一层一层向下计算
代码

#include < iostream>
#include <math.h>
#include < algorithm>
using namespace std;
typedef long long ll;
int main()
{
	ll N=pow(2,30);
	ll y;
	ll a[40][40]={0};
	int i=0,j=0,x=1;
	while(i<29)   //       构建二维数组(复制题目的数字塔)
	{
		j=0;
		while(j<x)
		{
			cin>>y;
			a[i][j]=y*N;
			j++;
		}
		i++;
		x++;
	}
	for(i=0,x=1;i<30;++i,++x) //计算(先将所有数字乘以2的三十次方,
	//避免出现大量小数,因为共有三十层,小数可能会很小)
	{
		for(j=0;j<x;++j)
		{
			y=a[i][j]/2;
			a[i+1][j]+=y;
			a[i+1][j+1]+=y;
		}
	}
	sort(a[29],a[29]+30);//排序找出最小值和最大值
	int z=a[29][0]/2086458231;//求出关系
	cout<<a[29][29]/z;
}

第四题 方格分割

问题
标题:方格分割

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。

如图:p1.png, p2.png, p3.png 就是可行的分割法。

试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
代码

#include<iostream> 
using namespace std;
int ans=0;
int move[][4]={{-1,1,0,0},{0,0,-1,1}};
int vis[7][7]={0};

void dfs(int x,int y)
{
	if(x<=0 || x>=6 || y<=0 || y>=6)
	{
		ans++;
		return;
	}
	
	for(int i=0; i<4; i++)
	{
		int curx = x+move[0][i];
		int cury = y+move[1][i];
		if(!vis[curx][cury] && !vis[6-curx][6-cury])
		{
			vis[curx][cury]=1;
			vis[6-curx][6-cury]=1;//对称点 
			dfs(curx,cury);
			vis[curx][cury]=0;
			vis[6-curx][6-cury]=0;
		}
	}
} 


int main()
{
	vis[3][3]=1;
	dfs(3,3);
	cout<<ans/4<<endl;
	return 0;
}

第五题 取数位

题目要求:求一位整数的第k位数字,填空题;

代码

#include <iostream>
using namespace std;
int len(int x){
	if(x<10) return 1;
	return len(x/10)+1;
}
	
// 取x的第k位数字
int f(int x, int k){
	if(len(x)-k==0) return x%10;
	return f(x/10,k);  //填空
}
	
int main()
{
	int x = 23574;
	printf("%d\n", f(x,3));
	return 0;
}

第六题 最大公共子串

题目要求:求出两字符串的最大公共子串;
代码

#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
	int a[N][N];
	int len1 = strlen(s1);
	int len2 = strlen(s2);
	int i,j;
	
	memset(a,0,sizeof(int)*N*N);
	int max = 0;
	for(i=1; i<=len1; i++){
		for(j=1; j<=len2; j++){
			if(s1[i-1]==s2[j-1]) {
				a[i][j] = a[i-1][j-1]+1;  //填空
				if(a[i][j] > max) max = a[i][j];
			}
		}
	}
	
	return max;
}

int main()
{
	printf("%d\n", f("abcdkkk", "baabcdadabc"));
	return 0;
}

思路:题目构建了一个全是0的二维数组,将其画出并根据代码意图可分析出答案;下图是数组下标及内容(自己走一两个字母即可);
在这里插入图片描述

第七题 日期问题

题目
标题:日期问题

小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。

比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。

给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?

输入

一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)

输入

输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。

样例输入

02/03/04

样例输出
2002-03-04
2004-02-03
2004-03-02
代码

#include <iostream>
#include <sstream>
#include <set>
using namespace std;
void i2s(int a,string &_a)//将数字转为字符串
{
	stringstream ss;
	ss<<a;
	ss>>_a;
}
int year(int a)//判断是否是闰年
{
	if((a%4==0&&a%100!=0)||a%400==0)
	return 1;
	else 
	return 0;
}
string fun(int a,int b,int c)//return ""是去掉错误的排序
{
	if(a>0&&a<=59) a+=2000;
	else if(a>59) a+=1900;
	else return"";
	if(b<0||b>12) return "";
	int s[12]={31,28,31,30,31,30,31,31,30,31,30,31};
	if(year(a)==1) s[1]=29;
	if(c<0||c>s[b-1]) return "";
	string _a,_b,_c;
	i2s(a,_a);
	i2s(b,_b);
	i2s(c,_c);
	//cout<<_a<<_b<<endl;
	if(_b.size()==1) _b='0'+_b;
	if(_c.size()==1) _c='0'+_c;
	return _a+'-'+_b+'-'+_c;
}
int main()
{
	string s;
	int a,b,c;
	cin>>s;
	a=(s[0]-'0')*10+s[1]-'0';
	b=(s[3]-'0')*10+s[4]-'0';
	c=(s[6]-'0')*10+s[7]-'0';
	string case1=fun(a,b,c);
	string case2=fun(c,a,b);
	string case3=fun(c,b,a);
	set<string> g;//set容器可排序又可去重,详细可百度;
	if(case1!="") g.insert(case1);
	if(case2!="") g.insert(case2);
	if(case3!="") g.insert(case3);
	for(set<string>::iterator it=g.begin();it!=g.end();++it)
	{
		cout<<*it<<endl;
	}
 } 

第八题 包子凑数

题目

标题:包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入

第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)

输出

一个整数代表答案。如果凑不出的数目有无限多个,输出INF。

例如,
输入:
2
4
5

程序应该输出:
6

再例如,
输入:
2
4
6

程序应该输出:
INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
代码

#include <iostream>
#include <set>
using namespace std;
int yueshu(set<int> a)
{
	int k=0;
	set<int> b;
	set<int>::iterator it=a.end();
	it--;
	for(int i=1;i<*it;++i)
	{
		for(set<int>::iterator rit=a.begin();rit!=a.end();++rit)
		{
			if(*rit%i!=0)
			{
				k=1;
				break;
			}
		}
		if(k==0){
			b.insert(i);
		}else k=0;
	}
	set<int>::iterator e=b.end();
	e--;
	return *e;
}
int main()
{
	set<int> a;
	int n,x,count=0;
	cin>>n;
	int t[n];
	for(int i=0;i<n;i++)
	{
		cin>>x;
		t[i]=x;
		a.insert(x);
	}
	if(yueshu(a)!=1)
	{
		cout<<"INF"<<endl;
		return 0;
	}
	int r[10000]={0};
	r[0]=1;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<10000;j++)
		{
			if(r[j]==1) r[j+t[i]]=1;
		}
	}
	for(int i=0;i<10000;i++)
	{
		if(r[i]==0)
		{
			count++;
			//cout<<i<<endl;
		}
	}
	cout<<count<<endl;
}

第九题 分巧克力

题目
标题: 分巧克力

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

1. 形状是正方形,边长是整数  
2. 大小相同  

例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10
6 5
5 6

样例输出:
2
代码

#include <iostream>
using namespace std;
int main()
{
	int n,k;
	cin>>n>>k;
	int w[10000];
	int c[10000];
	for(int i=0;i<n;++i)
	{
		cin>>w[i]>>c[i];
	}
	for(int i=0;i<n;++i)
	{
		cout<<w[i]<<" "<<c[i]<<endl;
	}
	int x=10000,z=0;
	int sum=0;
	int i=0;
	while(1)
	{
		for(i=0;i<n;i++)
		{
			sum+=(w[i]/x)*(c[i]/x);
		}
		if(sum>=k){
			z=1;
			x++;
		}else{
			if(z==1){
				x--;
				cout<<x<<endl;
				break;
			}
			x/=2;
		}
		sum=0;
	}
}

第十题 K倍区间

问题
标题: k倍区间

给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。

你能求出数列中总共有多少个K倍区间吗?

输入

第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)

输出

输出一个整数,代表K倍区间的数目。

例如,
输入:
5 2
1
2
3
4
5

程序应该输出:
6
代码

#include <iostream>
#include <map>
using namespace std;
int main()
{
	int n,k,i;
	map<int,int> m;
	cin>>n>>k;
	int s[100000],a[100000];
	s[0]=0;
	m[0]=1;
	for(i=1;i<=n;++i)
	{
		cin>>a[i];
		s[i]=(s[i-1]+a[i])%k;
		m[s[i]]++;
	}
	long long sum=0;
	for(i=0;i<k;i++)
	{
		sum+=(long long) m[i]*(m[i]-1)/2;
	}
	cout<<sum;
}

笔记
同余作差一定是模的倍数;
例如:7%3 =1,16%3=1,那么(16-7)一定是三的倍数
因为,这两数都是三的倍数多1,相减之后就是三的倍数;
这题主要是需要优化代码缩短时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值