第一题 购物单
标题: 购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
问题概括:购物清单算总价…
代码:
#include < iostream >
using namespace std;
int main()
{
double x,y;
double sum=0;
for(int i=0;i<54;i++)
{
cin>>x>>y;
sum+=x*y;
}
cout<<sum<<endl;
}
笔记:
emm,挺奇怪一题…
第二题 等差素数列
标题:等差素数列
2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
问题概括:查找个数为10的等差素数列,输出公差
代码:
#include<stdio.h>
int su[20000]={0};
int shai[20000]={1,1,0};
void p()
{
int k=0;
for(int i=0;i<10000;i++)
{
if(shai[i])
{
continue;
}
for(int j=i;j*i<10000;j++)
{
shai[i*j]=1;
}
su[k++]=i;
}
}
int suu()
{
int i,j,k;
for(i=0;i<10000;i++)
{
int kk=su[i];
for(k=1;k<1000;k++)
{
for(j=1;j<10;j++)
{
if(shai[kk+j*k])
{
break;
}
}
if(j>=10)
{
return k;
}
}
}
}
int main()
{
p();
int a=suu();
printf("%d\n",a);
return 0;
}
第三题 承压计算
标题:承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
解题思路:
将问题化作二维数组求和,一层一层向下计算
代码:
#include < iostream>
#include <math.h>
#include < algorithm>
using namespace std;
typedef long long ll;
int main()
{
ll N=pow(2,30);
ll y;
ll a[40][40]={0};
int i=0,j=0,x=1;
while(i<29) // 构建二维数组(复制题目的数字塔)
{
j=0;
while(j<x)
{
cin>>y;
a[i][j]=y*N;
j++;
}
i++;
x++;
}
for(i=0,x=1;i<30;++i,++x) //计算(先将所有数字乘以2的三十次方,
//避免出现大量小数,因为共有三十层,小数可能会很小)
{
for(j=0;j<x;++j)
{
y=a[i][j]/2;
a[i+1][j]+=y;
a[i+1][j+1]+=y;
}
}
sort(a[29],a[29]+30);//排序找出最小值和最大值
int z=a[29][0]/2086458231;//求出关系
cout<<a[29][29]/z;
}
第四题 方格分割
问题:
标题:方格分割
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
代码:
#include<iostream>
using namespace std;
int ans=0;
int move[][4]={{-1,1,0,0},{0,0,-1,1}};
int vis[7][7]={0};
void dfs(int x,int y)
{
if(x<=0 || x>=6 || y<=0 || y>=6)
{
ans++;
return;
}
for(int i=0; i<4; i++)
{
int curx = x+move[0][i];
int cury = y+move[1][i];
if(!vis[curx][cury] && !vis[6-curx][6-cury])
{
vis[curx][cury]=1;
vis[6-curx][6-cury]=1;//对称点
dfs(curx,cury);
vis[curx][cury]=0;
vis[6-curx][6-cury]=0;
}
}
}
int main()
{
vis[3][3]=1;
dfs(3,3);
cout<<ans/4<<endl;
return 0;
}
第五题 取数位
题目要求:求一位整数的第k位数字,填空题;
代码:
#include <iostream>
using namespace std;
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return f(x/10,k); //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
第六题 最大公共子串
题目要求:求出两字符串的最大公共子串;
代码:
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = a[i-1][j-1]+1; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
思路:题目构建了一个全是0的二维数组,将其画出并根据代码意图可分析出答案;下图是数组下标及内容(自己走一两个字母即可);
第七题 日期问题
题目:
标题:日期问题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输入
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
02/03/04
样例输出
2002-03-04
2004-02-03
2004-03-02
代码:
#include <iostream>
#include <sstream>
#include <set>
using namespace std;
void i2s(int a,string &_a)//将数字转为字符串
{
stringstream ss;
ss<<a;
ss>>_a;
}
int year(int a)//判断是否是闰年
{
if((a%4==0&&a%100!=0)||a%400==0)
return 1;
else
return 0;
}
string fun(int a,int b,int c)//return ""是去掉错误的排序
{
if(a>0&&a<=59) a+=2000;
else if(a>59) a+=1900;
else return"";
if(b<0||b>12) return "";
int s[12]={31,28,31,30,31,30,31,31,30,31,30,31};
if(year(a)==1) s[1]=29;
if(c<0||c>s[b-1]) return "";
string _a,_b,_c;
i2s(a,_a);
i2s(b,_b);
i2s(c,_c);
//cout<<_a<<_b<<endl;
if(_b.size()==1) _b='0'+_b;
if(_c.size()==1) _c='0'+_c;
return _a+'-'+_b+'-'+_c;
}
int main()
{
string s;
int a,b,c;
cin>>s;
a=(s[0]-'0')*10+s[1]-'0';
b=(s[3]-'0')*10+s[4]-'0';
c=(s[6]-'0')*10+s[7]-'0';
string case1=fun(a,b,c);
string case2=fun(c,a,b);
string case3=fun(c,b,a);
set<string> g;//set容器可排序又可去重,详细可百度;
if(case1!="") g.insert(case1);
if(case2!="") g.insert(case2);
if(case3!="") g.insert(case3);
for(set<string>::iterator it=g.begin();it!=g.end();++it)
{
cout<<*it<<endl;
}
}
第八题 包子凑数
题目:
标题:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
代码:
#include <iostream>
#include <set>
using namespace std;
int yueshu(set<int> a)
{
int k=0;
set<int> b;
set<int>::iterator it=a.end();
it--;
for(int i=1;i<*it;++i)
{
for(set<int>::iterator rit=a.begin();rit!=a.end();++rit)
{
if(*rit%i!=0)
{
k=1;
break;
}
}
if(k==0){
b.insert(i);
}else k=0;
}
set<int>::iterator e=b.end();
e--;
return *e;
}
int main()
{
set<int> a;
int n,x,count=0;
cin>>n;
int t[n];
for(int i=0;i<n;i++)
{
cin>>x;
t[i]=x;
a.insert(x);
}
if(yueshu(a)!=1)
{
cout<<"INF"<<endl;
return 0;
}
int r[10000]={0};
r[0]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<10000;j++)
{
if(r[j]==1) r[j+t[i]]=1;
}
}
for(int i=0;i<10000;i++)
{
if(r[i]==0)
{
count++;
//cout<<i<<endl;
}
}
cout<<count<<endl;
}
第九题 分巧克力
题目:
标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
代码:
#include <iostream>
using namespace std;
int main()
{
int n,k;
cin>>n>>k;
int w[10000];
int c[10000];
for(int i=0;i<n;++i)
{
cin>>w[i]>>c[i];
}
for(int i=0;i<n;++i)
{
cout<<w[i]<<" "<<c[i]<<endl;
}
int x=10000,z=0;
int sum=0;
int i=0;
while(1)
{
for(i=0;i<n;i++)
{
sum+=(w[i]/x)*(c[i]/x);
}
if(sum>=k){
z=1;
x++;
}else{
if(z==1){
x--;
cout<<x<<endl;
break;
}
x/=2;
}
sum=0;
}
}
第十题 K倍区间
问题:
标题: k倍区间
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
例如,
输入:
5 2
1
2
3
4
5
程序应该输出:
6
代码:
#include <iostream>
#include <map>
using namespace std;
int main()
{
int n,k,i;
map<int,int> m;
cin>>n>>k;
int s[100000],a[100000];
s[0]=0;
m[0]=1;
for(i=1;i<=n;++i)
{
cin>>a[i];
s[i]=(s[i-1]+a[i])%k;
m[s[i]]++;
}
long long sum=0;
for(i=0;i<k;i++)
{
sum+=(long long) m[i]*(m[i]-1)/2;
}
cout<<sum;
}
笔记:
同余作差一定是模的倍数;
例如:7%3 =1,16%3=1,那么(16-7)一定是三的倍数
因为,这两数都是三的倍数多1,相减之后就是三的倍数;
这题主要是需要优化代码缩短时间