参数分布估计方法(矩量法和极大似然方法)

分布的概念

​ 首先,我们要了解一下,我们所要求的分布就是一个什么东西。

​ **分布的表示:**P(x)
​ P(x)表示该分布中采样到样本x的概率,试想如果我们知道该分布中每个样本的采样概率,那么这个分布也就可以以这种形式表示出来了。
​ **含参分布的表示:**P(x;θ)
​ 其中θ 表示该分布的参数,一般这参数是待估计的,比如 P(x;θ) 可以是高斯分布, θ = [ μ , σ ] \theta=[\mu, \sigma] θ=[μ,σ],就是高斯分布的均值 μ \mu μ和方差 σ \sigma σ

要解决的问题

  • 给定一个数据分布 P d a t a ( x ) P_{data}(x) Pdata(x)

  • 假设一个由参数 θ θ θ定义的数据分布 P G ( x ; θ ) P_G(x;θ) PG(x;θ) θ \theta θ是未知的

  • 我们希望求得参数 θ θ θ使得 P G ( x ; θ ) P_G(x;θ) PG(x;θ)尽可能接近 P d a t a ( x ) P_{data}(x) Pdata(x)

    P G ( x ; θ ) P_G(x;θ) PG(x;θ)是某一具体的分布(比如简单的高斯分布),而 P d a t a ( x ) P_{data}(x) Pdata(x)是未知的(或者及其复杂,我们很难找到一个方式表示它),我们希望通过参数估计的方法来确定 θ \theta θ,让 P G ( x ; θ ) P_G(x;θ) PG(x;θ)能够表示 P d a t a ( x ) P_{data}(x) Pdata(x)

解决方法一(矩量法)

  1. 用观测数据计算一阶到k阶样本矩 m r = 1 N ∑ N 1 X i r , r = 1 , 2 , … , k m_r = \frac{1}{N} \sum_{N}^{1}X_{i}^{r}, r=1,2,…,k mr=N1N1Xir,r=1,2,,k
  2. 样本矩=理论矩,即得到各个估计量,例如: μ 1 = m 1 , μ 2 = m 2 , μ k = m k \mu_1=m_1, \mu_2=m_2, \mu_k=m_k μ1=m1,μ2=m2,μk=mk以及 σ = μ 2 − μ 1 2 \sigma=\mu_2 - \mu_1^2 σ=μ2μ12

解决方法二(极大似然方法)

  1. P d a t a ( x ) P_{data}(x) Pdata(x)采样m个样本 x 1 , x 2 , . . . , x m {x_1,x_2,...,x_m} x1,x2,...,xm
  2. 计算采样样本的似然函数 L = ∏ i = 1 m P G ( x i ; θ ) L=\prod_{i=1}^{m} P_{G}\left(x^{i} ; \theta\right) L=i=1mPG(xi;θ)
  3. 计算使得似然函数 L 最大的参数 θ : θ ∗ = arg ⁡ max ⁡ θ L = arg ⁡ max ⁡ θ ∏ i = 1 m P G ( x i ; θ ) \theta^{*}=\arg \max _{\theta} L=\arg \max _{\theta} \prod_{i=1}^{m} P_{G}\left(x^{i} ; \theta\right) θ=argmaxθL=argmaxθi=1mPG(xi;θ)

这里再啰嗦一下极大似然估计为什么要这么做:
P d a t a ( x ) P_{data}(x) Pdata(x)可以理解成是非常复杂的分布,不可能用某个数学表达精确表示,因此我们只能通过抽象,使用一个具体的分布模型 P G ( x ; θ ) P_G(x;θ) PG(x;θ)近似 P d a t a ( x ) P_{data}(x) Pdata(x)
所以,求 P G ( x ; θ ) P_G(x;θ) PG(x;θ)的参数 θ 的策略就变成了:
我们认为来自 P d a t a ( x ) P_{data}(x) Pdata(x)的样本 {x1,x2,…,xm} 在 P G ( x ; θ ) P_G(x;θ) PG(x;θ)分布中出现的概率越高,也就是 ∏ i = 1 m P G ( x i ; θ ) \prod_{i=1}^{m} P_{G}\left(x^{i} ; \theta\right) i=1mPG(xi;θ)越大, P G ( x ; θ ) P_G(x;θ) PG(x;θ) P d a t a ( x ) P_{data}(x) Pdata(x)就越接近。
因此,我们期待的 θ 就是使得 ∏ i = 1 m P G ( x i ; θ ) \prod_{i=1}^{m} P_{G}\left(x^{i} ; \theta\right) i=1mPG(xi;θ)最大的 θ .
即: θ ∗ = arg ⁡ max ⁡ θ L = arg ⁡ max ⁡ θ ∏ i = 1 m P G ( x i ; θ ) \theta^{*}=\arg \max _{\theta} L=\arg \max _{\theta} \prod_{i=1}^{m} P_{G}\left(x^{i} ; \theta\right) θ=argmaxθL=argmaxθi=1mPG(xi;θ)

咱们继续推导:
KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \begin{aligned…
​ 关于最后一步:

​ 因为我们求取的是θ,而式 − ∫ x P d a t a ( x ) l o g ⁡ P d a t a ( x ) d x −∫xPdata(x)log⁡Pdata(x)dx xPdata(x)logPdata(x)dx与θ无关,因此加上这一项并不影响等式。

​ 加上这一项是为了后面的推导,把极大似然函数的式子化简成KL散度的表达式

​ (公式推导接上)
θ ∗ = arg ⁡ max ⁡ θ L ≈ arg ⁡ max ⁡ theta  E x ∼ P data  [ log ⁡ P G ( x ; θ ) ] = arg ⁡ max ⁡ θ ∫ x P data  ( x ) log ⁡ P G ( x ; θ ) d x = arg ⁡ max ⁡ θ ∫ x P data  ( x ) log ⁡ P G ( x ; θ ) d x − ∫ x P data  ( x ) log ⁡ P data  ( x ) d x = arg ⁡ min ⁡ θ K L ( P data  ( x ) ∥ P G ( x ; θ ) ) \begin{equation} \begin{aligned} \theta^{*} &=\arg \max _{\theta} L \\ & \approx \arg \max _{\text {theta }} E_{x \sim P_{\text {data }}}\left[\log P_{G}(x ; \theta)\right] \\ &=\arg \max _{\theta} \int_{x} P_{\text {data }}(x) \log P_{G}(x ; \theta) d x \\ &=\arg \max _{\theta} \int_{x} P_{\text {data }}(x) \log P_{G}(x ; \theta) d x-\int_{x} P_{\text {data }}(x) \log P_{\text {data }}(x) d x \\ &=\arg \min _{\theta} K L\left(P_{\text {data }}(x) \| P_{G}(x ; \theta)\right) \end{aligned} \end{equation} θ=argθmaxLargtheta maxExPdata [logPG(x;θ)]=argθmaxxPdata (x)logPG(x;θ)dx=argθmaxxPdata (x)logPG(x;θ)dxxPdata (x)logPdata (x)dx=argθminKL(Pdata (x)PG(x;θ))

​ 找到 θ \theta θ使得 P G ( x ; θ ) P_G(x;θ) PG(x;θ)与目标分布 P d a t a ( x ) P_{data}(x) Pdata(x)的KL散度尽可能低,也就是使得两者的分布尽可能接近,实现用确定的分布 P G ( x ; θ ) P_G(x;θ) PG(x;θ)极大似然 P d a t a ( x ) P_{data}(x) Pdata(x)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值