[string]14. Longest Common Prefix

14. Longest Common Prefix

Write a function to find the longest common prefix string amongst an array of strings.

If there is no common prefix, return an empty string “”.

Example 1:

Input: strs = [“flower”,“flow”,“flight”]
Output: “fl”

Example 2:

Input: strs = [“dog”,“racecar”,“car”]
Output: “”
Explanation: There is no common prefix among the input strings.

Constraints:

1 <= strs.length <= 200
0 <= strs[i].length <= 200
strs[i] consists of only lowercase English letters.

solution1 横向扫描

基于该结论,可以得到一种查找字符串数组中的最长公共前缀的简单方法。依次遍历字符串数组中的每个字符串,对于每个遍历到的字符串,更新最长公共前缀,当遍历完所有的字符串以后,即可得到字符串数组中的最长公共前缀。

如果在尚未遍历完所有的字符串时,最长公共前缀已经是空串,则最长公共前缀一定是空串,因此不需要继续遍历剩下的字符串,直接返回空串即可。

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if (!strs.size()) {
            return "";
        }
        string prefix = strs[0];
        int count = strs.size();
        for (int i = 1; i < count; ++i) {
            prefix = longestCommonPrefix(prefix, strs[i]);
            if (!prefix.size()) {
                break;
            }
        }
        return prefix;
    }

    string longestCommonPrefix(const string& str1, const string& str2) {
        int length = min(str1.size(), str2.size());
        int index = 0;
        while (index < length && str1[index] == str2[index]) {
            ++index;
        }
        return str1.substr(0, index);
    }
};

复杂度分析

时间复杂度:O(mn)O(mn),其中 mm 是字符串数组中的字符串的平均长度,nn 是字符串的数量。最坏情况下,字符串数组中的每个字符串的每个字符都会被比较一次。

空间复杂度:O(1)O(1)。使用的额外空间复杂度为常数。

solution2 纵向扫描

方法一是横向扫描,依次遍历每个字符串,更新最长公共前缀。另一种方法是纵向扫描。纵向扫描时,从前往后遍历所有字符串的每一列,比较相同列上的字符是否相同,如果相同则继续对下一列进行比较,如果不相同则当前列不再属于公共前缀,当前列之前的部分为最长公共前缀。

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if (!strs.size()) {
            return "";
        }
        int length = strs[0].size();
        int count = strs.size();
        for (int i = 0; i < length; ++i) {
            char c = strs[0][i];
            for (int j = 1; j < count; ++j) {
                if (i == strs[j].size() || strs[j][i] != c) {
                    return strs[0].substr(0, i);
                }
            }
        }
        return strs[0];
    }
};

复杂度分析

时间复杂度:O(mn)O(mn),其中 mm 是字符串数组中的字符串的平均长度,nn 是字符串的数量。最坏情况下,字符串数组中的每个字符串的每个字符都会被比较一次。

空间复杂度:O(1)O(1)。使用的额外空间复杂度为常数。

solution3 分治

对两个子问题分别求解,然后对两个子问题的解计算最长公共前缀,即为原问题的解。

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if (!strs.size()) {
            return "";
        }
        else {
            return longestCommonPrefix(strs, 0, strs.size() - 1);
        }
    }

    string longestCommonPrefix(const vector<string>& strs, int start, int end) {
        if (start == end) {
            return strs[start];
        }
        else {
            int mid = (start + end) / 2;
            string lcpLeft = longestCommonPrefix(strs, start, mid);
            string lcpRight = longestCommonPrefix(strs, mid + 1, end);
            return commonPrefix(lcpLeft, lcpRight);
        }
    }

    string commonPrefix(const string& lcpLeft, const string& lcpRight) {
        int minLength = min(lcpLeft.size(), lcpRight.size());
        for (int i = 0; i < minLength; ++i) {
            if (lcpLeft[i] != lcpRight[i]) {
                return lcpLeft.substr(0, i);
            }
        }
        return lcpLeft.substr(0, minLength);
    }
};

复杂度分析

时间复杂度:O(mn)O(mn),其中 mm 是字符串数组中的字符串的平均长度,nn 是字符串的数量。时间复杂度的递推式是 T(n)=2 \cdot T(\frac{n}{2})+O(m)T(n)=2⋅T(
2
n

)+O(m),通过计算可得 T(n)=O(mn)T(n)=O(mn)。

空间复杂度:O(m \log n)O(mlogn),其中 mm 是字符串数组中的字符串的平均长度,nn 是字符串的数量。空间复杂度主要取决于递归调用的层数,层数最大为 \log nlogn,每层需要 mm 的空间存储返回结果。

solution4 二分查找

显然,最长公共前缀的长度不会超过字符串数组中的最短字符串的长度。用 \textit{minLength}minLength 表示字符串数组中的最短字符串的长度,则可以在 [0,\textit{minLength}][0,minLength] 的范围内通过二分查找得到最长公共前缀的长度。每次取查找范围的中间值 \textit{mid}mid,判断每个字符串的长度为 \textit{mid}mid 的前缀是否相同,如果相同则最长公共前缀的长度一定大于或等于 \textit{mid}mid,如果不相同则最长公共前缀的长度一定小于 \textit{mid}mid,通过上述方式将查找范围缩小一半,直到得到最长公共前缀的长度。

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if (!strs.size()) {
            return "";
        }
        int minLength = min_element(strs.begin(), strs.end(), [](const string& s, const string& t) {return s.size() < t.size();})->size();
        int low = 0, high = minLength;
        while (low < high) {
            int mid = (high - low + 1) / 2 + low;
            if (isCommonPrefix(strs, mid)) {
                low = mid;
            }
            else {
                high = mid - 1;
            }
        }
        return strs[0].substr(0, low);
    }

    bool isCommonPrefix(const vector<string>& strs, int length) {
        string str0 = strs[0].substr(0, length);
        int count = strs.size();
        for (int i = 1; i < count; ++i) {
            string str = strs[i];
            for (int j = 0; j < length; ++j) {
                if (str0[j] != str[j]) {
                    return false;
                }
            }
        }
        return true;
    }
};

复杂度分析

时间复杂度:O(mn \log m)O(mnlogm),其中 mm 是字符串数组中的字符串的最小长度,nn 是字符串的数量。二分查找的迭代执行次数是 O(\log m)O(logm),每次迭代最多需要比较 mnmn 个字符,因此总时间复杂度是 O(mn \log m)O(mnlogm)。

空间复杂度:O(1)O(1)。使用的额外空间复杂度为常数。

作者:LeetCode-Solution
链接:https://leetcode.cn/problems/longest-common-prefix/solution/zui-chang-gong-gong-qian-zhui-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

solution5

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        int n=strs.size(), j=0;
        string s;
        char c;
        bool flag = true;
        while(flag){
            for(int i=0;i<n;i++){
                if(j>=strs[i].size()){
                    flag = false;
                    break;
                }
                if(i==0)
                    c = strs[i][j];
                else{
                    if(strs[i][j] != c){
                        flag = false;
                        break;
                    }
                }
            }
            if(flag){
                s += c;
                j++;
            }
        }
        return s;
    }
};

作者:nbgao
链接:https://leetcode.cn/problems/longest-common-prefix/solution/by-nbgao-4qzr/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

solution6

解题思路
先找出数组中字典序最小和最大的字符串,最长公共前缀即为这两个字符串的公共前缀

代码
下面是 C++17 的代码

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if(strs.empty()) return "";
        // c++17 结构化绑定
        // str0, str1 分别是一个 pair<string, string> 的 first 和 second
        const auto [str0, str1] = minmax_element(strs.begin(), strs.end());
        for(int i = 0; i < str0->size(); ++i)
            if(str0->at(i) != str1->at(i)) return str0->substr(0, i);
        return *str0;
    }
};

等同的 C++11 代码如下

class Solution {
public:
    string longestCommonPrefix(vector<string>& strs) {
        if(strs.empty()) return "";
        const auto p = minmax_element(strs.begin(), strs.end());
        for(int i = 0; i < p.first->size(); ++i)
            if(p.first->at(i) != p.second->at(i)) return p.first->substr(0, i);
        return *p.first;
    }
};

作者:you-yuan-de-cang-qiong
链接:https://leetcode.cn/problems/longest-common-prefix/solution/zi-dian-xu-zui-da-he-zui-xiao-zi-fu-chuan-de-gong-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

re

C++17结构化绑定
https://zhxilin.github.io/post/tech_stack/1_programming_language/modern_cpp/cpp17/structured_bindings/
C++11 std::minmax_element() 的使用(寻找最小值和最大值)
https://blog.csdn.net/yong1585855343/article/details/114687106
C++ pair的基本用法总结
https://blog.csdn.net/sevenjoin/article/details/81937695
c++ substr
https://blog.csdn.net/weixin_42240667/article/details/103131329

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值