数论

因数

试除法分解质因数

void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            //杀掉这个书中所有包含这个质因数的全部数s代表的是这个质因数包含的个数,i是指这个质因数
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    //最后的是代表的是如果最后x>1的话,那么这个x就一定是素数,那么一定还要输出最后的那个素数作为其质因数。
    cout << endl;
}

//解释附在代码片中辣。

素数(质数)

在自然数集中,小于n的质数大概有n/(ln(n))个

1.试除法判定素数

所谓试除法判定就是我们遇到一个素数就去判断小于等于sqrt(这个数)的所有数是否可以整除这个数,如果均不能那么就是素数,如果可以的话那么就break出去说明这个不是素数。

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
    //这里是一个小小的优化,省去了sqrt这一步
    //到那时做到了和sqrt相同的效果
        if (x % i == 0)
            return false;
    return true;
}

2.筛法求素数

朴素筛法求素数

朴素筛法就是将我们求的的素数的所有倍数全部筛出去,那么我们留下的就都是素数,因为我们没有被筛掉的数说明(2–>k-1)均不是它的因子,那必然是素数呵呵呵,没啥好说的…

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
//因为针对于所有的以2为最小质因数的合数一定可以被筛,如果i能被2整除,那么接下来的所有的数都能被2整除,那么在i的接下来的过程中的遍历的时候,都能将含有2的合数删去,如果i不能被整除,那么这个数中最小质因子就是大于primes[j]的数,那么我们接下来要去找,这个数的最小质因子就好.
        }
    }
}

解释附在代码片中。

约数

约数和因数的本质区别在于:
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.

试除法求所有的约数

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

性质

针对于所有的约数都具备如下性质:
如果一个数P可以写成如下形式:
P=b1a1 ·b2a2 ········bkak
其中b123……k一定是所有的质因数
那么所有约数的个数便是(计数原理)
N=(a1+1)(a2+1)········(ak+1)
所有约数的个数便是
N=(b10 +b11 +b12 +……+b1a1)·(b20 +b21 +b22 +……+b2a2) ·(b30 +b31 +b32 +……+b3a3) ············(bk0 +bk1 +bk2 +……+bkak)

欧几里得算法(辗转相除法)

模板

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

这里需要用到整除原理:
如果d|b而且d|a那么d|(xa+yb),x和y分别是任意正整数那么(a,b)=(b,a mod b)
因为a mod b=a-[a/b]b;
那么此时x=1,y=-[a/b]
那么就一定可以整除a mod b,因此得证。

乘法逆元

如果一个线性同余方程
,
则 x 称为 a mod b 的逆元,记作a-1

求乘法逆元在拓展欧几里得算法和快速幂算法中提到,因此本节只是介绍概念。

裴蜀定理

设 a,b 是不全为零的整数,则存在整数x,y, 使得
在这里插入图片描述

欧拉降幂

欧拉函数

欧拉函数φ(n)就是1-n中与n互质的数字的数目,其通式为:
在这里插入图片描述
(其中p1, p2……pn为x的所有质因数,x是不为0的整数),而且定义φ(1)=1。

欧拉定理

若n,a为正整数,且n,a互质,则:
在这里插入图片描述
一个小推论若正整数a与m 互质,则
在这里插入图片描述

费马小定理

如果p是一个质数,而整数a不是p的倍数,则
在这里插入图片描述

拓展欧拉定理

在这里插入图片描述
同时若
在这里插入图片描述
本式子恒成立
在这里插入图片描述
至此,便有了欧拉降幂的模板题

幂塔的个位数计算

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define mode(a,b) a<b?a:a%b+b//欧拉降幂的精髓之处
using namespace std;
typedef long long ll;
ll mp[2102010];
ll ola(ll n){	
	if(mp[n]) return mp[n];
	ll x=n;
	ll s=n;
	for(ll i=2;i<=n/i;i++){
		if(n%i==0){
			s-=s/i;
			while(n%i==0) n/=i;
		}
	}
	if(n>1) s-=s/n;return mp[x]=s;
}//求欧拉函数
ll qmi(ll m, ll k, ll p)
{
    ll res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = mode(res * t , p);
        t = mode(t * t , p);
        k >>= 1;
    }
    return res;
}
ll solve(ll a,ll b,ll mod){
	if(mod==1||b==1) return mode(a,mod);
	else return qmi(a,solve(a,b-1,ola(mod)),mod);
}
int main(){
	char a[2102020],b[2102002];
	scanf("%s",a);
	scanf("%s",b);
	ll len1=strlen(a);
	ll len2=strlen(b);
	ll aa=a[len1-1]-'0';
	if(len1>1)aa=(a[len1-2]-'0')*10+aa;
    if(len1>2)aa=(a[len1-3]-'0')*100+aa;
	ll bb=b[len2-1]-'0';
	if(len2>1)bb=(b[len2-2]-'0')*10+bb;
    if(len2>2)bb=(b[len2-3]-'0')*100+bb;
    if(aa==0){
        printf("0");
    }else{
		cout<<solve(aa,bb,10)%10;
	}
	return 0;
} 

快速幂

快速幂本幂

求 m^k mod p,时间复杂度 O(logk)int qmi(int m, int k, int p)
{
    int res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

快速幂求乘法逆元

莫比乌斯反演

预备知识

积性函数

在这里插入图片描述

迪利克雷卷积

莫比乌斯函数

莫比乌斯反演

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值