【数论函数】
- 数论函数:
- 定义域为正整数的函数。
- 积性函数:
- 对于所有 gcd(a,b)=1 ,满足 f(ab)=f(a)∗f(b) 。
- 完全积性函数:
- 对于所有 a,b ,满足 f(ab)=f(a)∗f(b) 。
- 欧拉函数:
- φ(n) 表示 [1,n] 中与 n 互质的数的个数。
φ(n)=nΠpϵSp−1p 其中 S 是n 的不同质因子的集合。
- 莫比乌斯函数:
- μ(n)=⎧⎩⎨1(−1)m0n=1Πmi=1ki=1otherwise(ki>1)
- 除数函数:
- σk(n) 表示所有正因子的 k 次幂之和。
d(n) 表示 n 的正因子个数。
d(n)=σ0(n)
-
σ(n)
表示
n
的所有正因子之和。
σ(n)=σ1(n)
- 幂函数:
- Idk(n)=nk
- 1(n)=Id0(n)=1
- Id(n)=Id1(n)=n
- 单位函数:
- e(n)=ϵ(n)=[n=1]