P2522 [HAOI2011]Problem b(莫比乌斯反演+容斥原理)

题目传送门
本题题意转化成为:
∑ x = a b ∑ y = c d [ g c d ( i , j ) = = k ] \displaystyle\sum_{x=a}^{b}\displaystyle\sum_{y=c}^{d}[ gcd(i,j)==k] x=aby=cd[gcd(i,j)==k]
这道题应该就是比较基础了
容斥原理
∑ x = a b ∑ y = c d [ g c d ( i , j ) = = k ] = ∑ x = 1 b ∑ y = 1 d [ g c d ( i , j ) = = k ] − ∑ x = 1 a − 1 ∑ y = 1 d [ g c d ( i , j ) = = k ] − ∑ x = 1 b ∑ y = 1 c − 1 [ g c d ( i , j ) = = k ] + ∑ x = 1 a − 1 ∑ y = 1 c − 1 [ g c d ( i , j ) = = k ] \displaystyle\sum_{x=a}^{b}\displaystyle\sum_{y=c}^{d}[ gcd(i,j)==k] =\displaystyle\sum_{x=1}^{b}\displaystyle\sum_{y=1}^{d}[ gcd(i,j)==k]-\displaystyle\sum_{x=1}^{a-1}\displaystyle\sum_{y=1}^{d}[ gcd(i,j)==k]-\displaystyle\sum_{x=1}^{b}\displaystyle\sum_{y=1}^{c-1}[ gcd(i,j)==k]+\displaystyle\sum_{x=1}^{a-1}\displaystyle\sum_{y=1}^{c-1}[ gcd(i,j)==k] x=aby=cd[gcd(i,j)==k]=x=1by=1d[gcd(i,j)==k]x=1a1y=1d[gcd(i,j)==k]x=1by=1c1[gcd(i,j)==k]+x=1a1y=1c1[gcd(i,j)==k]
也就是求四个这个东西的式子

∑ x = 1 a ∑ y = 1 b [ g c d ( x , y ) = = k ] \displaystyle\sum_{x=1}^{a}\displaystyle\sum_{y=1}^{b}[ gcd(x,y)==k] x=1ay=1b[gcd(x,y)==k]
提取公因数
∑ x = 1 a / k ∑ y = 1 b / k ε ( g c d ( x , y ) ) \displaystyle\sum_{x=1}^{a/k}\displaystyle\sum_{y=1}^{b/k}ε(gcd(x,y)) x=1a/ky=1b/kε(gcd(x,y))
莫比乌斯函数
∑ x = 1 a / k ∑ y = 1 b / k ∑ d ∣ g c d ( x , y ) μ ( d ) \displaystyle\sum_{x=1}^{a/k}\displaystyle\sum_{y=1}^{b/k}\displaystyle\sum_{d|gcd(x,y)}^{}μ(d) x=1a/ky=1b/kdgcd(x,y)μ(d)
交换枚举顺序
∑ d = 1 d < = m i n ( a / k , b / k ) μ ( d ) ∑ x = 1 a / ( k ∗ d ) ∑ y = 1 b / ( k ∗ d ) 1 \displaystyle\sum_{d=1}^{d<=min(a/k,b/k)}μ(d)\displaystyle\sum_{x=1}^{a/(k*d)}\displaystyle\sum_{y=1}^{b/(k*d)}1 d=1d<=min(a/k,b/k)μ(d)x=1a/(kd)y=1b/(kd)1
∑ d = 1 d < = m i n ( a / k , b / k ) μ ( d ) ∗ ( b / ( k ∗ d ) ) ∗ ( a / ( k ∗ d ) ) \displaystyle\sum_{d=1}^{d<=min(a/k,b/k)}μ(d)*(b/(k*d))*(a/(k*d)) d=1d<=min(a/k,b/k)μ(d)(b/(kd))(a/(kd))

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 500000;
int mu[N + 5], p[N + 5];
bool flg[N + 5];
void mobius() {
  int tot = 0;
  mu[1] = 1;
  for (int i = 2; i <= N; ++i) {
    if (!flg[i]) {
      p[++tot] = i;
      mu[i] = -1;
    }
    for (int j = 1; j <= tot && i * p[j] <= N; ++j) {
      flg[i * p[j]] = 1;
      if (i % p[j] == 0) {
        mu[i * p[j]] = 0;
        break;
      }
      mu[i * p[j]] = -mu[i];
    }
  }
  //数论分块要用到的前缀和 
  for (int i = 1; i <= N; ++i) mu[i] += mu[i - 1];
}
int lsc(int n,int m){
	int ans=0;
	for(int i=1,j;i<=min(n,m);i=j+1){
		j=min(n/(n/i),m/(m/i));
		ans+=(mu[j]-mu[i-1])*(n/i)*(m/i);
	}
	return ans;
}
int main(){
	mobius();
	int T;
	cin>>T;
	while(T--){
		int a,b,c,d,k;
		cin>>a>>b>>c>>d>>k;
		cout<<lsc(b/k,d/k)-lsc((a-1)/k,d/k)-lsc(b/k,(c-1)/k)+lsc((a-1)/k,(c-1)/k)<<endl;
	} 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值