P4178 Tree(点分治)

题目链接

题目描述

给定一棵 n n n 个节点的树,每条边有边权,求出树上两点距离小于等于 k k k 的点对数量。

输入格式

第一行输入一个整数 n n n,表示节点个数。

第二行到第 n n n 行每行输入三个整数 u , v , w u,v,w u,v,w,表示 u u u v v v 有一条边,边权是 w w w

n + 1 n+1 n+1 行一个整数 k k k

输出格式

一行一个整数,表示答案。

输入输出样例

输入

7
1 6 13 
6 3 9 
3 5 7 
4 1 3 
2 4 20 
4 7 2 
10

输出

5

说明/提示

对于全部的测试点,保证:

  • 1 ≤ n ≤ 4 × 1 0 4 1\leq n\leq 4\times 10^4 1n4×104
  • 1 ≤ u , v ≤ n 1\leq u,v\leq n 1u,vn
  • 0 ≤ w ≤ 1 0 3 0\leq w\leq 10^3 0w103
  • 0 ≤ k ≤ 2 × 1 0 4 0\leq k\leq 2\times 10^4 0k2×104

点分治步骤

  • 找到树的重心
  • 将重心视为根节点,那么树上任意两点有两种情况
    • 路径经过根节点
    • 路径不经过根节点
  • 通过 c a l c calc calc 函数计算出第一种情况下的答案,把根节点从树中删去
  • 对每棵子树执行上面的操作

calc函数的计算方法

  • 计算出每个结点到根节点的距离 d [ i ] d[i] d[i]
  • 将树上的结点按照 d [ i ] d[i] d[i] 递增排序
  • 指针 l l l 指向 d [ 1 ] d[1] d[1] ,指针 r r r 指向 d [ n ] d[n] d[n]
  • l l l r r r 指向结点的距离小于 k k k ,则 a n s + = r − l + 1 , l + + ans+=r-l+1,l++ ans+=rl+1,l++
  • 否则 r − − r-- r。当 l > = r l>=r l>=r 的时候退出循环。

按照上面的方法,会把不经过根节点的路径也算入进去。利用容斥原理修正答案:

ans-=calc(y,edge[i]);

c a l c calc calc 函数的第一个参数为树的根节点,第二个参数为附加距离。

#include<bits/stdc++.h>
using namespace std;
const int N=4e4+10;
int n,k,u,v,w,root,ans,vis[N],mxSize,Size[N],len[N],d[N];
int head[N],ver[N<<1],Next[N<<1],edge[N<<1],tot;

void add(int u,int v,int w){
    ver[++tot]=v,edge[tot]=w,Next[tot]=head[u],head[u]=tot;
}

void getRoot(int x,int fa){
    Size[x]=1;  int mx=0;
    for(int i=head[x];i;i=Next[i]){
        int y=ver[i];
        if(vis[y]||y==fa)   continue;
        getRoot(y,x);
        Size[x]+=Size[y];
        mx=max(mx,Size[y]);
    }
    mx=max(mx,n-Size[x]);
    if(mx<mxSize)   root=x,mxSize=mx;
}

void getDis(int x,int fa){
    len[++len[0]]=d[x];
    for(int i=head[x];i;i=Next[i]){
        int y=ver[i];
        if(vis[y]||y==fa)   continue;
        d[y]=d[x]+edge[i];
        getDis(y,x);
    }
}

int calc(int x,int w){
    d[x]=w; len[0]=0;   int ret=0;
    getDis(x,x);
    sort(len+1,len+len[0]+1);
    for(int l=1,r=len[0];l<r;){
        if(len[l]+len[r]<=k)    ret+=r-l,l++;
        else    r--;
    }
    return ret;
}

void solve(int x){
    vis[x]=1;
    ans+=calc(x,0);
    for(int i=head[x];i;i=Next[i]){
        int y=ver[i];
        if(vis[y])  continue;
        ans-=calc(y,edge[i]);
        mxSize=n,getRoot(y,y);
        solve(root);
    }
}

int main(){
    scanf("%d",&n);
    ans=tot=0;
    for(int i=1;i<n;i++){
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w),add(v,u,w);
    }
    scanf("%d",&k);
    mxSize=n,getRoot(1,1);
    solve(root);
    printf("%d\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
K-D Tree(K-Dimensional Tree)算法是一种基于分治法的数据结构,用于高维空间的搜索和排序。它的基本思想是将多维空间中的点以某种方式分割成更小的子空间,然后在每个子空间中递归地进行搜索。这样可以大大降低搜索的复杂度。 具体来说,K-D Tree算法可以分为以下几步: 1. 选择一个维度,将数据点按照该维度的值进行排序。 2. 找到该维度的中位数,将其作为当前节点,并将数据点分为左右两个子集。 3. 递归地构建左子树和右子树,每次选择一个新的维度进行划分。 4. 最终得到一个K-D Tree。 在搜索时,我们可以从根节点开始,按照一定的规则向下遍历,直到找到目标点或者无法继续向下搜索。具体的规则是: 1. 如果目标点在当前节点的左子树中,则继续向左子树搜索。 2. 如果目标点在当前节点的右子树中,则继续向右子树搜索。 3. 如果目标点和当前节点在选定的维度上的值相等,则说明已经找到目标点。 分治法是一种常见的算法思想,它将一个大规模的问题分解成若干个小规模的子问题,每个子问题独立地求解,然后将这些子问题的解合并起来得到原问题的解。分治法通常包含三个步骤:分解、求解、合并。 具体来说,分治法可以分为以下几步: 1. 分解:将原问题分成若干个子问题,每个子问题规模较小且结构与原问题相同。 2. 求解:递归地求解每个子问题,直到问题规模足够小可以直接求解。 3. 合并:将所有子问题的解合并成原问题的解。 分治法的优点是可以有效地降低算法的时间复杂度。但是它的缺点是需要额外的空间来存储子问题的解,而且分解和合并的过程也需要耗费一定的时间。因此,需要根据实际情况选择合适的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_51864047

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值