左偏树(可并堆)【模板】

题目描述

链接

如题,一开始有 n n n 个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

1   x   y 1~ x~ y 1 x y:将第 x x x 个数和第 y y y 个数所在的小根堆合并(若第 x x x 或第 y y y 个数已经被删除或第 x x x 和第 y y y 个数在用一个堆内,则无视此操作)。

2   x 2~ x 2 x:输出第 x x x 个数所在的堆最小数,并将这个最小数删除(若有多个最小数,优先删除先输入的;若第 x x x 个数已经被删除,则输出 − 1 -1 1 并无视删除操作)。

输入格式

第一行包含两个正整数 n , m n, m n,m 分别表示一开始小根堆的个数和接下来操作的个数。

第二行包含 n n n 个正整数,其中第 i i i 个正整数表示第 i i i 个小根堆初始时包含且仅包含的数。

接下来 m m m 行每行 2 2 2 个或 3 3 3 个正整数,表示一条操作,格式如下:

操作 1 1 1 1   x   y 1~ x~ y 1 x y

操作 2 2 2 2   x 2~ x 2 x

输出格式

输出包含若干行整数,分别依次对应每一个操作 2 2 2 所得的结果。

输入

5 5
1 5 4 2 3
1 1 5
1 2 5
2 2
1 4 2
2 2

输出

1
2

【数据规模】

对于 30 % 30\% 30% 的数据: n ≤ 10 n\le 10 n10 m ≤ 10 m\le 10 m10
对于 70 % 70\% 70% 的数据: n ≤ 1 0 3 n\le 10^3 n103 m ≤ 1 0 3 m\le 10^3 m103
对于 100 % 100\% 100% 的数据: n ≤ 1 0 5 n\le 10^5 n105 m ≤ 1 0 5 m\le 10^5 m105
初始时小根堆中的所有数都在 i n t int int 范围内。

【样例解释】

初始状态下,五个小根堆分别为: { 1 } \{1\} {1} { 5 } \{5\} {5} { 4 } \{4\} {4} { 2 } \{2\} {2} { 3 } \{3\} {3}

第一次操作,将第 1 1 1 个数所在的小根堆与第 5 5 5 个数所在的小根堆合并,故变为四个小根堆: { 1 , 3 } \{1,3\} {1,3} { 5 } \{5\} {5} { 4 } \{4\} {4} { 2 } \{2\} {2}

第二次操作,将第 2 2 2 个数所在的小根堆与第 5 5 5 个数所在的小根堆合并,故变为三个小根堆: { 1 , 3 , 5 } \{1,3,5\} {1,3,5} { 4 } \{4\} {4} { 2 } \{2\} {2}

第三次操作,将第 2 2 2 个数所在的小根堆的最小值输出并删除,故输出 1 1 1,第一个数被删除,三个小根堆为: { 3 , 5 } \{3,5\} {3,5} { 4 } \{4\} {4} { 2 } \{2\} {2}

第四次操作,将第 4 4 4 个数所在的小根堆与第 2 2 2 个数所在的小根堆合并,故变为两个小根堆: { 2 , 3 , 5 } \{2,3,5\} {2,3,5} { 4 } \{4\} {4}

第五次操作,将第 2 2 2 个数所在的小根堆的最小值输出并删除,故输出 2 2 2,第四个数被删除,两个小根堆为: { 3 , 5 } \{3,5\} {3,5} { 4 } \{4\} {4}

故输出依次为 1 1 1 2 2 2

思路

需要使用一种能够动态维护最值,并且支持合并的数据结构,于是选择了左偏树。

先放代码,再说细节:

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int ls[N],rs[N],rt[N],v[N],id[N],d[N],vis[N];
int n,m,op,x,y;

int merge(int x,int y){
	if(!x||!y) return x+y;
	if(v[y]<v[x]||(v[y]==v[x]&&id[y]<id[x])) swap(x,y);
	rs[x]=merge(rs[x],y);
	if(d[ls[x]]<d[rs[x]]) swap(ls[x],rs[x]);
	d[x]=d[rs[x]]+1;
	return x;
}

int get(int x){
	if(rt[x]==x) return x;
	return rt[x]=get(rt[x]);
}

int main(){
	cin>>n>>m;
	d[0]=-1;
	for(int i=1;i<=n;i++)
		cin>>v[i],id[i]=rt[i]=i;
	while(m--){
		cin>>op>>x;
		if(op==1){
			cin>>y;
			if(vis[x]||vis[y]) continue;
			x=get(x),y=get(y);
			if(x!=y) rt[x]=rt[y]=merge(x,y);
		}else if(op==2){
			if(vis[x]){ cout<<"-1\n"; continue; }
			x=get(x);
			cout<<v[x]<<"\n";
			vis[x]=1;
			rt[ls[x]]=rt[rs[x]]=rt[x]=merge(ls[x],rs[x]);
		}
	}
}

这题还需要查询某个结点所在的根节点,可以再多维护一个 f a fa fa 关系。但是,左偏树不会保证平衡,若是一层一层往上找根节点,复杂度没有保证。
所以用并查集压缩路径的方法维护根节点。

rt[ls[x]]=rt[rs[x]]=rt[x]=merge(ls[x],rs[x]);
这行代码绝对不能写成:
rt[ls[x]]=rt[rs[x]]=merge(ls[x],rs[x]);
因为压缩路径后,x为根的子树中,很多结点的根节点直接指向x,第二种写法只修改了它左右儿子的根节点,显然是错的。
如果要一个个去修改子树结点的根,也太慢了,所以 rt[x]=merge(ls[x],rs[x]) 继续交给并查集去处理。

if(!x||!y) return x+y;
这个相当于:
if(!x) return y; if(!y) return x;

d[0]=-1;
这行代码让 n u l l null null 结点的距离小于任何结点,不过去掉也几乎不影响性能。

又到了博客推荐环节:

可并堆之左偏树

【模板】左偏树(可并堆)

数据结构: 可合并堆-左偏树

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_51864047

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值