- 冒泡排序
- 选择排序
- 快速排序
- 插入排序
- 希尔排序
- 归并排序
- 堆排序
- 桶排序
- 基数排序
1. 算法思想
- 计数排序统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引 i 位(i≥0)。
- 计数排序基于一个假设,待排序数列的所有数均为整数,且出现在(0,k)的区间之内。
- 如果 k(待排数组的最大值) 过大则会引起较大的空间复杂度,一般是用来排序 0 到 100 之间的数字的最好的算法,但是它不适合按字母顺序排序人名。
- 计数排序不是比较排序,排序的速度快于任何比较排序算法。
2. 算法步骤
- 找出待排序的数组中最大和最小的元素;
- 统计数组中每个值为 i 的元素出现的次数,存入数组 C 的第 i 项;
- 对所有的计数累加(从 C 中的第一个元素开始,每一项和前一项相加);
- 向填充目标数组:将每个元素 i 放在新数组的第
C[i]
项,每放一个元素就将 C[i]
减去 1。
3. 代码实现(C++)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
void printVector(vector<int>& nums)
{
for (auto num : nums)
{
cout << num << " ";
}
cout << endl;
}
void CountSort(vector<int>& nums, vector<int>& ans_nums)
{
if (nums.size() == 0) return;
int vecCountLength = (*max_element(begin(nums), end(nums))) + 1;
vector<int> vecCount(vecCountLength, 0);
for (int i = 0; i < nums.size(); ++i)
{
vecCount[nums[i]]++;
}
for (int i = 1; i < vecCountLength; ++i)
{
vecCount[i] += vecCount[i - 1];
}
for (int i = nums.size(); i > 0; --i)
{
ans_nums[--vecCount[nums[i - 1]]] = nums[i - 1];
}
}
int main()
{
vector<int> nums = { 0,5,7,9,6,3,4,5,2,8,6,9,2,1 };
vector<int> ans_nums(nums.size(), 0);
cout << "排序前:" << endl;
printVector(nums);
CountSort(nums, ans_nums);
cout << "排序后:" << endl;
printVector(ans_nums);
return 0;
}
4. 补充知识
- 稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 仍然在 b 的前面,则为稳定排序;
- 非稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 可能不在 b 的前面,则为非稳定排序。
- 原地排序:原地排序就是指在排序过程中不申请多余的存储空间,只利用原来存储待排数据的存储空间进行比较和交换的数据排序;
- 非原地排序:需要利用额外的数组来辅助排序。
- 时间复杂度:一个算法执行所消耗的时间(次数,因为同一程序在不同系统的执行时间可能不同);
- 空间复杂度:运行完一个算法所需的内存大小。