AI夏令营笔记——任务1

任务1

任务说明

任务要求主要如下:

从论文标题、摘要作者等信息,判断该论文是否属于医学领域的文献。
可以将任务看作是一个文本二分类任务。机器需要根据对论文摘要等信息的理解,将论文划分为医学领域的文献和非医学领域的文献两个类别之一。

实现思路

针对文本分类任务,可以提供两种实践思路,一种是使用传统的特征提取方法(如TF-IDF/BOW)结合机器学习模型,另一种是使用预训练的BERT模型进行建模。使用特征提取 + 机器学习的思路步骤如下:

  • 数据预处理:首先,对文本数据进行预处理,包括文本清洗(如去除特殊字符、标点符号)、分词等操作。可以使用常见的NLP工具包(如NLTK或spaCy)来辅助进行预处理。

  • 特征提取:使用TF-IDF(词频-逆文档频率)或BOW(词袋模型)方法将文本转换为向量表示。TF-IDF可以计算文本中词语的重要性,而BOW则简单地统计每个词语在文本中的出现次数。可以使用scikit-learn库的TfidfVectorizer或CountVectorizer来实现特征提取。

  • 构建训练集和测试集:将预处理后的文本数据分割为训练集和测试集,确保数据集的样本分布均匀。

  • 选择机器学习模型:根据实际情况选择适合的机器学习模型,如朴素贝叶斯、支持向量机(SVM)、随机森林等。这些模型在文本分类任务中表现良好。可以使用scikit-learn库中相应的分类器进行模型训练和评估。

  • 模型训练和评估:使用训练集对选定的机器学习模型进行训练,然后使用测试集进行评估。评估指标可以选择准确率、精确率、召回率、F1值等。

  • 调参优化:如果模型效果不理想,可以尝试调整特征提取的参数(如词频阈值、词袋大小等)或机器学习模型的参数,以获得更好的性能。

Baseline中我们选择使用BOW将文本转换为向量表示,选择逻辑回归模型来完成训练和评估。代码如下:

# 导入pandas用于读取表格数据
import pandas as pd

# 导入BOW(词袋模型)
from sklearn.feature_extraction.text import CountVectorizer
# 导入TF-IDF(词频-逆文档频率)
from sklearn.feature_extraction.text import TfidfVectorizer

# 导入LogisticRegression回归模型
from sklearn.linear_model import LogisticRegression

# 过滤警告消息
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)

# 读取数据集
train = pd.read_csv('/home/aistudio/data/data231041/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')

test = pd.read_csv('/home/aistudio/data/data231041/testB.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')

""" 
from sklearn.model_selection import train_test_split

# 该函数将会根据给定比例将数据集划分为训练集与验证集
trian_data, eval_data = train_test_split(test, test_size = 0.2)
# 参数 data 为总数据集,可以是 DataFrame 类型
# 参数 test_size 为划分验证集的占比,此处选择0.2,即划分20%样本作为验证集
 """

# 提取文本特征,生成训练集与测试集
train['text'] = train['title'].fillna('') + ' ' +  train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' +  test['author'].fillna('') + ' ' + test['abstract'].fillna('')

# stop词
stops =[i.strip() for i in open(r'stop.txt',encoding='utf-8').readlines()]

# vector = CountVectorizer(stop_words=stops).fit(train['text'])
vector = TfidfVectorizer(stop_words=stops).fit(train["text"])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])

# 引入模型
model = LogisticRegression()

# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果
model.fit(train_vector, train['label'])

# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
# 生成任务一推测结果
test[['uuid', 'Keywords', 'label']].to_csv('submit_task2.csv', index=None)

优化方向

其实Baseline已经是一个可以一键运行的代码了,但如果直接提交baseline的话,准确率大概为67%左右,而我们只需要简单的几个操作,可能就可以让准确率甚至提升10%。

  1. 数据清洗
    可以通过去除一些对于辅助判断无用的信息来提高效率与准确率,如作者栏。
    PS.可以利用知识图谱等来得知作者所处领域,如果是医学领域,那为医学领域的文章的可能性就会大很多。
  2. 模型选择
    我们可以选择BOW或者TF-IDF两种不同模型,两者主要的区别就是TF-IDF更好的考虑了上下文关联,感兴趣的话可以再自行了解。而如果想要提升准确率的话,可以选择TF-IDF模型。
# 导入TF-IDF(词频-逆文档频率)
from sklearn.feature_extraction.text import TfidfVectorizer
vector = TfidfVectorizer().fit(train["text"])
  1. 停用词
    停用词就是一些对于帮助理解语义意义不大的词,如汉语中的“了”、“吗”等等,我们可以将这些词给排除在外,以提高我们的效率与准确率。
    PS.停用词文档需要自行下载
# stop词
stops =[i.strip() for i in open(r'stop.txt',encoding='utf-8').readlines()]
vector = TfidfVectorizer(stop_words=stops).fit(train["text"])
  1. 调参
    由于调参过程较为繁琐,在这里就不写详细记录了,但是会给一个示例,可以不断调整batch_size与epoch来取得更好的效果。
model.fit(train_vector, train['label'],batch_size=1000,epoch=10)

conclusion

总而言之,在结合了2、3两个方法后,我的准确率大概在76%左右。具体代码如下:

# 导入pandas用于读取表格数据
import pandas as pd

# 导入BOW(词袋模型)
from sklearn.feature_extraction.text import CountVectorizer
# 导入TF-IDF(词频-逆文档频率)
from sklearn.feature_extraction.text import TfidfVectorizer

# 导入LogisticRegression回归模型
from sklearn.linear_model import LogisticRegression

# 过滤警告消息
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)

# 读取数据集
train = pd.read_csv('/home/aistudio/data/data231041/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')

test = pd.read_csv('/home/aistudio/data/data231041/testB.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')

""" 
from sklearn.model_selection import train_test_split

# 该函数将会根据给定比例将数据集划分为训练集与验证集
trian_data, eval_data = train_test_split(test, test_size = 0.2)
# 参数 data 为总数据集,可以是 DataFrame 类型
# 参数 test_size 为划分验证集的占比,此处选择0.2,即划分20%样本作为验证集
 """

# 提取文本特征,生成训练集与测试集
train['text'] = train['title'].fillna('') + ' ' +  train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' +  test['author'].fillna('') + ' ' + test['abstract'].fillna('')

# stop词
stops =[i.strip() for i in open(r'stop.txt',encoding='utf-8').readlines()]

# vector = CountVectorizer(stop_words=stops).fit(train['text'])
vector = TfidfVectorizer(stop_words=stops).fit(train["text"])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])

# 引入模型
model = LogisticRegression()

# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果
model.fit(train_vector, train['label'])

# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
# 生成任务一推测结果
test[['uuid', 'Keywords', 'label']].to_csv('submit_task2.csv', index=None)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值