loc()函数里使用布尔值的series作为参数

filt=(~df['Age'].isnull())
df=df.loc[filt,:]
print(df)

程序之所以知道 filt 中的每个元素对应 df 中的每一行,是因为 pandas 库设计时就考虑到了这种需求,并在实现中做了对应的处理。具体来说,pandasDataFrameSeries 对象在进行布尔索引时,会对齐索引(index),确保布尔序列正确地应用到数据框的行或列上。

工作原理

  1. 索引对齐

    • pandas 使用索引(index)来对齐 DataFrameSeries。当你对 DataFrame 进行布尔索引时,pandas 会自动根据索引对齐布尔序列和数据框的行。
  2. 长度匹配

    • 在进行布尔索引时,pandas 要求布尔序列的长度与数据框的行数相同。这样,每个布尔值就可以对应数据框中的一行。

示例解析

假设你有一个 DataFrame df 和一个布尔序列 filt,它们的索引和长度如下:

import pandas a
### 回答1: DataFrame的`loc`函数是一种基于标签的索引方式,用于按照行和列标签提取数据。它通过传入行和列的标签,可以精确地定位到数据的位置,并返回所需的数据。 `loc`函数的语法如下: ``` DataFrame.loc[row_indexer, column_indexer] ``` `row_indexer`和`column_indexer`可以是单个标签、标签列表、标签切片或布尔数组,用于指定要提取的行和列。 使用`loc`函数,可以实现以下操作: 1. 提取单个元素:可以通过指定行和列的标签,提取单个元素的值。 2. 提取多个元素:可以通过指定行和列的标签列表,提取多个元素的值。 3. 切片提取:可以通过行和列的标签切片,提取指定范围的数据。 4. 布尔索引提取:可以通过布尔数组来过滤数据,提取满足条件的行和列。 需要注意的是,`loc`函数是基于标签的索引方式,所有指定的行和列标签都必须存在于DataFrame中,否则会抛出KeyError异常。另外,使用`loc`函数进行提取操作时,返回的数据以DataFrame的形式返回。 总结起来,DataFrame的`loc`函数提供了一种基于标签的精确索引方式,可以方便地提取DataFrame中的数据,并支持单个元素、多个元素、切片和布尔索引等操作。 ### 回答2: DataFrame.loc函数Pandas库中的一个方法,用于根据行标签和列标签来选择、切片和修改DataFrame中的数据。它是根据标签索引(label-based indexing)来定位数据的,可以通过行标签、列标签或者二者的组合来达到定位数据的目的。 使用loc函数时,我们需要在方括号中指定要选择的行(行标签)和列(列标签),并用逗号隔开。例如:df.loc[row_label, col_label]。这样可以准确定位到某行某列的数据。 还可以通过传入切片对象或布尔列表进行选择和修改数据。切片对象用来选取一定范围内的行或列,而布尔列表则可以根据条件选择满足条件的行或列。 此外,还可以利用loc函数给选定的位置赋值。例如:df.loc[row_label, col_label] = new_value。这个功能在需要修改或替换数据时非常有用。 使用loc函数具有以下优点: 1. 可以通过行标签和列标签来准确选择数据,非常方便。 2. 可以使用切片对象和布尔列表进行更加灵活的数据筛选和修改。 3. 可以直接在选定的位置赋值,极大地提高了数据处理的效率和便利性。 总之,loc函数Pandas库中操作DataFrame数据的重要方法,能够方便地定位和处理具有行标签和列标签的数据,使数据的选择、切片和修改变得简单而高效。 ### 回答3: DataFrame的loc函数Pandas库中用于按标签筛选数据的函数。通过loc函数,可以根据行标签和列标签来访问和操作DataFrame中的数据。 在使用loc函数时,我们可以传入一个行标签和一个列标签,也可以传入一个切片对象。当传入一个标签时,loc函数会根据该标签去定位数据,返回一个Series对象,其中索引是列名,值是对应的数据。如果标签不存在,则会引发KeyError异常。 可以通过loc函数来获取DataFrame中的某一行或多行数据,此时需要传入行标签。同时也可以获取某个或多个特定的列数据,此时需要传入列标签。还可以传入行标签和列标签,获取指定的行和列交叉点的数据。 另外,利用loc函数还可以进行条件筛选,满足条件的数据将被选中。例如,可以根据某一列的数值范围进行筛选,或者根据多个条件的组合来进行筛选。 总之,DataFrame的loc函数是一个十分灵活和强大的工具,用于按标签选取数据并进行各种操作。通过熟练掌握它的使用方法,可以更加便捷和高效地处理DataFrame中的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值