loc()函数里使用布尔值的series作为参数

filt=(~df['Age'].isnull())
df=df.loc[filt,:]
print(df)

程序之所以知道 filt 中的每个元素对应 df 中的每一行,是因为 pandas 库设计时就考虑到了这种需求,并在实现中做了对应的处理。具体来说,pandasDataFrameSeries 对象在进行布尔索引时,会对齐索引(index),确保布尔序列正确地应用到数据框的行或列上。

工作原理

  1. 索引对齐

    • pandas 使用索引(index)来对齐 DataFrameSeries。当你对 DataFrame 进行布尔索引时,pandas 会自动根据索引对齐布尔序列和数据框的行。
  2. 长度匹配

    • 在进行布尔索引时,pandas 要求布尔序列的长度与数据框的行数相同。这样,每个布尔值就可以对应数据框中的一行。

示例解析

假设你有一个 DataFrame df 和一个布尔序列 filt,它们的索引和长度如下:

import pandas as pd
import numpy as np

# 创建示例数据框
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, np.nan, 30, np.nan]
}

df = pd.DataFrame(data)

# 创建布尔值序列 filt
filt = ~df['Age'].isnull()

在这个示例中:

  • df 的索引是 [0, 1, 2, 3]
  • filt 的索引也是 [0, 1, 2, 3]

执行布尔索引

当你使用 loc 索引器进行布尔索引时:

df_filtered = df.loc[filt, :]
  • loc 索引器会将 filt 中的布尔值与 df 的索引进行对齐。
  • 因为 filt 的索引与 df 的索引完全一致,且长度相同,每个布尔值自然对应 df 中的每一行。

详细步骤

  1. 生成布尔序列 filt

    filt = ~df['Age'].isnull()
    

    filt 是一个 Series,其索引与 df 的行索引相同:

    0     True
    1    False
    2     True
    3    False
    Name: Age, dtype: bool
    
  2. 使用 loc 索引器进行布尔索引

    df_filtered = df.loc[filt, :]
    

    loc 索引器将 filtdf 的行索引对齐,然后选择 filt 中布尔值为 True 的行:

         Name   Age
    0    Alice  25.0
    2  Charlie  30.0
    

对齐机制

pandas 的索引对齐机制确保了即使索引顺序不同,布尔索引也能正确应用。考虑下面的例子:

# 重新索引示例
df = df.set_index([pd.Index([10, 11, 12, 13])])

# filt 的索引仍然是 [0, 1, 2, 3]
filt = pd.Series([True, False, True, False], index=[10, 11, 12, 13])

# 使用 loc 索引器进行布尔索引
df_filtered = df.loc[filt, :]

在这个例子中,即使索引不是默认的整数索引,pandas 仍然会基于索引对齐 filtdf,确保布尔值正确应用:

      Name   Age
10  Alice  25.0
12  Charlie  30.0

通过这些机制,pandas 能够确保布尔序列正确地应用到 DataFrame 的行上,从而实现精确的布尔索引操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值