有监督学习方法之线性回归

一、线性回归的原理

1.1 线性回归使用场景

  • 房价预测
  • 销售额度预测
  • 金融:贷款额度预测、利用线性回归以及系数分析因子

1.2什么是线性回归

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
**特点:**只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归
在这里插入图片描述
那么怎么理解呢?我们来看几个例子

  • 期末成绩:0.7×考试成绩+0.3×平时成绩
  • 房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) +0.254×城镇犯罪率上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程。

上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程。

1.2.2 线性回归的特征与目标的关系分析

线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征举例子。

  • 线性关系
    在这里插入图片描述

在这里插入图片描述
注释:如果在单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

  • 非线性关系
    在这里插入图片描述

注释:为什么会这样的关系呢?原因是什么?我们后面 讲解过拟合欠拟合重点介绍如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32

二、线性回归的损失和优化原理

假设刚才的房子例子,真实的数据之间存在这样的关系

  • 真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房 价) + 0.254×城镇犯罪率

那么现在呢,我们随意指定一个关系(猜测)

  • 随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房 价 + 0.34×城镇犯罪率

请问这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似这样样子
在这里插入图片描述
那么存在这个误差,我们将这个误差给衡量出来

2.1 损失函数

总损失定义为:
在这里插入图片描述

  • y_i为第i个训练样本的真实值
  • h(x_i)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法
    如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!

2.2 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法:

  • 正规方程
    在这里插入图片描述
    理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
    缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

在这里插入图片描述

  • 梯度下降(Gradient Descent)
    在这里插入图片描述
    理解:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向沿着这个函数下降的方向找,最后就能找到山谷的最低点,然后更新W值
    使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果

我们通过两个图更好理解梯度下降的过程
在这里插入图片描述
在这里插入图片描述
所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力

三、线性回归API

sklearn.linear_model.LinearRegression(fit_intercept=True)
  • 通过正规方程优化
  • fit_intercept:是否计算偏置
  • LinearRegression.coef_:回归系数
    LinearRegression.intercept_:偏置
sklearn.linear_model.SGDRegressor(loss="squared_loss",fit_intercept=True, learning_rate='invscaling', eta0=0.01)
  • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
  • loss:损失类型
  • loss=”squared_loss”: 普通最小二乘法
  • fit_intercept:是否计算偏置
  • learning_rate : string, optional
  • 学习率填充
  • ‘constant’: eta = eta0
  • ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]
  • ‘invscaling’: eta = eta0 / pow(t, power_t)
  • power_t=0.25:存在父类当中
  • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
  • SGDRegressor.coef_:回归系数
  • SGDRegressor.intercept_:偏置

sklearn提供给我们两种实现的API, 可以根据选择使用

三、 实例——波士顿房价预测

  • 数据介绍
    在这里插入图片描述

在这里插入图片描述
给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只需要使用这些特征。到后面量化很多特征需要我们自己去寻找

3.1 分析

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。同时我们对目标值也需要做标准化处理。

  • 数据分割与标准化处理回归预测
  • 线性回归的算法效果评估

3.2 回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:
在这里插入图片描述
注:y^i为预测值,¯y为真实值

sklearn.metrics.mean_squared_error(y_true, y_pred)
  • 均方误差回归损失
  • y_true:真实值
  • y_pred:预测值
  • return:浮点数结果

3.3代码

def mylinearregression():
""" 线性回归预测房子价格 :return: """
lb = load_boston()
# 对数据集进行划分 
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.3, random_state=24)
# 需要做标准化处理对于特征值处理 
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.fit_transform(x_test) 
# print(x_train) 
# 对于目标值进行标准化
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train) 
y_test = std_y.transform(y_test) 
y_test = std_y.inverse_transform(y_test)
# 使用线性模型进行预测 
# 使用正规方程求解 
lr = LinearRegression() 
# # 此时在干什么? 
lr.fit(x_train, y_train) 
y_lr_predict=std_y.inverse_transform(lr.predict(x_test)) 
print(lr.coef_)
print("正规方程预测的结果为:", y_lr_predict) 
print("正规方程的均方误差为:", mean_squared_error(y_test, y_lr_predict))


# 梯度下降进行预测 
sgd = SGDRegressor() 
sgd.fit(x_train, y_train) 
print("SGD的权重参数为:", sgd.coef_)
y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test))
print("SGD的预测的结果为:", y_sgd_predict)
print("SGD的均方误差为:", mean_squared_error(y_test, y_sgd_predict)) 
return None

我们也可以尝试去修改学习率

sgd = SGDRegressor(learning_rate='constant', eta0=0.001)

此时我们可以通过调参数,找到学习率效果更好的值。

3.4 正规方程和梯度下降对比

在这里插入图片描述

  • 文字对比
    在这里插入图片描述

选择:

  • 小规模数据: LinearRegression(不能解决拟合问题)
  • 岭回归 大规模数据:SGDRegressor

四、拓展-关于优化方法GD、SGD、SAG

4.1 GD

梯度下降(Gradient Descent),原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

4.2 SGD

随机梯度下降(Stochastic gradient descent)是一个优化方法。它在一次迭代时只考虑一个训练样本。
SGD的优点是:

  • 高效
  • 容易实现

SGD的缺点是:

  • SGD需要许多超参数:比如正则项参数、迭代数。
  • SGD对于特征标准化是敏感的。

4.3 SAG

随机平均梯度法(Stochasitc Average Gradient),由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法

Scikit-learn:SGDRegressor、岭回归、逻辑回归等当中都会有SAG优化

五、 总结

  • 线性回归的损失函数-均方误差
  • 线性回归的优化方法
  • 正规方程
  • 梯度下降
  • 线性回归的性能衡量方法-均方误差
  • sklearn的SGDReg
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hyk今天写算法了吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值