LeetCode每日一题——646. 最长数对链

题目

给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。

现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。

给定一个数对集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

示例

示例:

输入:[[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4]

提示:

给出数对的个数在 [1, 1000] 范围内。

思路

动态规划或者贪心都可以做,贪心在这里比较容易。

  1. 贪心:需要将给定的数组按照第二个元素从小到大排序,从第一个最小的元素p开始算起,记录p[1]的值往后遍历,找到x[0] > p[1]即增长数链,更新p[1]的值为x[1],循环往后即可。
  2. 动态规划:dp[i]代表到pairs[i]的最长数链长度,现将给定数组按照第二个元素排好序,(保证第一个元素只能做为数链首部),状态转移条件是:找到第i个元素之前符合条件的数取dp[i]和dp[j]+1的较大值作为dp[i]的值。记录数链长度的最大值即可。

题解

1、贪心

class Solution:
    def findLongestChain(self, pairs: List[List[int]]) -> int:
        pairs = sorted(pairs, key=lambda x:x[1])
        ans, temp = 1, pairs[0][1]
        for i in range(1, len(pairs)):
            if pairs[i][0] > temp:
                ans += 1
                temp = pairs[i][1]
        return ans    

2、动态规划

class Solution:
    def findLongestChain(self, pairs: List[List[int]]) -> int:
        pairs = sorted(pairs, key=lambda x:x[1])
        n = len(pairs)
        dp = [1] * n
        max_ = 1
        for i in range(1, n):
            for j in range(i):
                if pairs[i][0] > pairs[j][1]:
                    dp[i] = max(dp[i], dp[j] + 1)
                    max_ = max(dp[i], max_)
        return max_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hyk今天写算法了吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值