推荐搜索炼丹笔记:SIM 用户行为序列点击率预估模型

SIM是一种两阶段模型,用于利用长期序列数据预测Click-Through Rate。第一阶段的General Search Unit(GSU)通过Hard或Soft-search方法提取关键子序列,第二阶段的Exact Search Unit(ESU)使用注意力机制进一步精细化提取兴趣。实验表明,SIM在长期行为预估上优于DIN和DIEN,并已在阿里实际系统中应用。
摘要由CSDN通过智能技术生成

v2-071e132c7353c2be34deb925be1bf617_b.jpg
作者:十方,公众号:炼丹笔记

Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction

阿里对行为序列的研究可以说已经独领风骚了,前有DIN,后有MIMN,现在又出了这篇SIM。只能说行为序列确实对点击率预估很重要,阿里已经证明,丰富的用户行为数据对工业场景下推荐系统的点击率预估具有很大的价值。MINN已经把序列长度增加到了1000,然而当长度超过1000,MIMN很难准确捕捉用户兴趣了。淘宝23%的用户在过去5个月点击都超过1000个item,所以这篇论文想对任意长度的行为序列进行建模。

v2-3aee1411db3f29191bc5525afff8a966_b.jpg

下图就是SIM,是个two-stage的策略,每个stage伴随着一个重要的unit,General Search Unit(GSU)和Exact Search Unit(ESU)。

  • first-stage: 这一步用GSU在线性时间内,把原始的长序列提取出top-K的子序列,K远远小于原始序列长度。
  • second-stage: 这一步用ESU把first-stage提取的top-K子序列作为输入,用一个类似DIN,DIEN的复杂结构精确的提取兴趣。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值