在互联网行业,无论是构建搜索推荐系统,还是智能营销等场景,都是围绕用户进行不同的实验,从各项指标上观察用户对不同交互、流程、策略、算法等反馈,进而对产品、营销策略、搜索推荐算法等进行迭代改进。
在之前的文章《流量为王:收益最大化的混排机制》探讨了如何在原始的运营流量或者推荐流量中,增加广告流量、带货流量后,将不同内容类型如何呈现给不同的用户,同时根据不同的业务不同的目标导向,兼顾各方需求的混排机制,在流量为王的时代,对于实现流量的价值转化。
在本篇文章中,主要讨论在进行了模型的线下迭代并且有了提升之后,怎么线上进行实验,怎么决定对哪些用户进行新策略、算法A的尝试,对哪些用户保持原有算法B进行对照。


ABTest的概念来源于生物医学的双盲测试,双盲测试中病人被随机分成两组,在不知情的情况下分别给予安慰剂和测试用药,经过一段时间的实验后再来比较这两组病人的表现是否具有显著的差异,从而决定测试用药是否有效?
ABTest强调的是同一时间维度对相似属性分组用户的测试,时间的统一性有效的规避