题目描述
小H在一个划分成了n*m个方格的长方形封锁线上。 每次他能向上下左右四个方向移动一格(当然小H不可以静止不动), 但不能离开封锁线,否则就被打死了。 刚开始时他有满血6点,每移动一格他要消耗1点血量。一旦小H的 血量降到 0, 他将死去。 他可以沿路通过拾取鼠标(什么鬼。。。)来补满血量。只要他走到有鼠标的格子,他不需要任何时间即可拾取。格子上的鼠标可以瞬间补满,所以每次经过这个格子都有鼠标。就算到了某个有鼠标的格子才死去, 他也不能通过拾取鼠标补满 HP。 即使在家门口死去, 他也不能算完成任务回到家中。
地图上有 5 种格子:
数字 0: 障碍物。
数字 1: 空地, 小H可以自由行走。
数字 2: 小H出发点, 也是一片空地。
数字 3: 小H的家。
数字 4: 有鼠标在上面的空地。
小H能否安全回家?如果能, 最短需要多长时间呢?
输入格式
第一行两个整数n,m, 表示地图的大小为n*m。
下面 n 行, 每行 m 个数字来描述地图。
输出格式
一行, 若小H不能回家, 输出-1,否则输出他回家所需最短时间。
输入输出样例
输入 #1复制
3 3 2 1 1 1 1 0 1 1 3
输出 #1复制
4
说明/提示
1<=n,m<=9
一见到迷宫我们就不由得想到DFS
因为递归用起来真的太爽了
你只需要设定好对应情况所需要做出的反应,然后一键DFS
答案就迎刃而解了!!!
(注意:DFS的灵魂就在于你的试探+复原,就如同漫威里奇异博士几千次的预约,每当你开启一种可能,你就要提前做好还原的准备)
ps:这里筑墙是为了限定边界,主要为了试探过程中防止出现数组越界的情况
package 算法;
import java.io.*;
public class P2802_回家 {
static StreamTokenizer r = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static PrintWriter pr = new PrintWriter(new OutputStreamWriter(System.out));
static BufferedReader re = new BufferedReader(new InputStreamReader(System.in));
static int heart = 6;
static int ii;
static int jj;
static int leastPATH = 81;
static int path = 0;
static int n;
static int m;
public static void main(String[] args) throws IOException {
r.nextToken();
n = (int) r.nval;
r.nextToken();
m = (int) r.nval;
int wall[][] = new int[n + 2][m + 2];
for (int i = 1; i < n + 1; i++) {
for (int j = 1; j < m + 1; j++) {
r.nextToken();
wall[i][j] = (int) r.nval;
if (wall[i][j] == 2) {
ii = i;
jj = j;
}
}
}
//建墙
for (int i = 0; i < n + 2; i++) {
wall[i][0] = -1;
wall[i][m + 1] = -1;
}
for (int i = 0; i < m + 2; i++) {
wall[0][i] = -1;
wall[n + 1][i] = -1;
}
goHome(wall, ii, jj);
if (leastPATH != 81) {
pr.println(leastPATH);
pr.flush();
} else {
pr.println(-1);
pr.flush();
}
}
static void goHome(int a[][], int i, int j) {
int head = a[i - 1][j];
int bottom = a[i + 1][j];
int left = a[i][j - 1];
int right = a[i][j + 1];
//试探+复原
choiceNumber(head, a, i - 1, j);heart++; path--;
choiceNumber(bottom, a, i + 1, j);heart++; path--;
choiceNumber(left, a, i, j - 1);heart++; path--;
choiceNumber(right, a, i, j + 1);heart++; path--;
return;
}
static void choiceNumber(int a, int e[][], int i, int j) {
path++;
heart--;
if(heart<=0||path>m*n||path>leastPATH){
return;//及时回溯+防止溢栈
}
if (a == 0 || a == 2 || a == -1) {
return;
} else if (a == 1) {
goHome(e, i, j);
} else if (a == 3) {
leastPATH = leastPATH < path ? leastPATH : path;
} else {
int tempheart=heart;
heart = 6;
goHome(e, i, j);
heart=tempheart;//此处注意返回时要将血量复原
}
}
}