题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
正解
1)历遍找循环点
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode ret = null;
ListNode low = new ListNode(0);
ListNode temp = new ListNode(0);
if (head != null) {//若有头节点
if (head.next == null) {//若仅有头节点,且头节点不为循环点
//直接返回low
} else {
temp.next = head;
int size = 0;
while (temp.next != null) {
size++;
if (size >= 10000) {
break;
}
}
if (size < 10000) {//若其没有循环点
//直接返回low
} else {//若有循环点,开始历遍检测
low.next = head;
while (low.next != null) {
low = low.next;
if (isSame(low, low)) {
ret = low;
break;
}
}
}
}
}
return ret;
}
//以当前节点为起点进行历遍,若在历遍中超过两次遇到该点,说明该点为循环点
public static boolean isSame(ListNode a, ListNode b) {
boolean flag = false;
ListNode temp = a;
int size = 0;
for (int i = 0; i <= 10000; i++) {//这里题中条件说明链表长度不超过10000
if (temp == b) {
size++;
if (size >= 2) {
flag = true;
break;
}
}
if (temp.next != null) {
temp = temp.next;
} else {
break;
}
}
return flag;
}
}
2)显然上述方法十分耗时,在本题中我们可以运用双指针来巧解
分为两个步骤:1.确认是否有环;2.确定环的位置
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {// 有环
ListNode index1 = fast;
ListNode index2 = head;
// 两个指针,从头结点和相遇结点,各走一步,直到相遇,相遇点即为环入口
while (index1 != index2) {
index1 = index1.next;
index2 = index2.next;
}
return index1;
}
}
return null;
}
}
可见速度提升很多!
(关于循环点判断的补充)
假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:
那么相遇时: slow指针走过的节点数为: x + y
, fast指针走过的节点数:x + y + n (y + z)
,n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。
因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:
(x + y) * 2 = x + y + n (y + z)
两边消掉一个(x+y): x + y = n (y + z)
因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。
所以要求x ,将x单独放在左面:x = n (y + z) - y
,
再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z
注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。
这个公式说明什么呢?
先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。
当 n为1的时候,公式就化解为 x = z
,
这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点。
也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。
让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。
动画如下: