基于传感器的HAR任务PyTorch实战

Human Activity RecognitionHAR)译文:人类活动识别,人类行为识别,人体姿态识别

整理了7个公开数据集【

  • Daily-and-Sports-Activities-dataset 
  • PAMAP2 dataset 
  • UCI-HAR dataset 
  • USC-HAD dataset 
  • UniMiB-SHAR dataset 
  • WISDM dataset 
  • OPPORTUNITY dataset 

】从“原始数据预处理->模型训练”端到端HAR流程,欢迎交流学习。

源码地址:https://github.com/xushige/HAR-Dataset-Preprocess【直接复制链接进入github,不要点加速计划】

预处理方法包括:滑窗切割重采样、插值、标准化等

分类网络包括:【CNN, LSTM, ResNet, Res2Net, ResNext, SKNet, ResNest, Channel_Attention_Net, Spatial_Attention_Net, DCN, MobileNet, ShuffleNet, Dilated_Convolution, VIT, Swin】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值