分类指标
acc准确率
Accuracy=(TP+TN)/(TP+FP+TN+FN)
所有样本都正确分类的概率,可以使用不同的阈值T

precision精确度
Precision=TP/(TP+FP),对的正样本/对的分类。表示的是召回为正样本的样本中,到底有多少是真正的正样本。
recall召回率
Recall=TP/(TP+FN),对的正样本/正样本
recall-precison 横轴就是recall,纵轴就是precision,曲线越接近右上角,说明其性能越好,可以用该曲线与坐标轴包围的面积来定量评估,值在0~1之间。
4.F1score
F1 score=2·Precision·Recall/(Precision+Recall),只有在召回率Recall和精确率Precision都高的情况下,F1 score才会很高,因此F1 score是一个综合性能的指标。
混淆矩阵
类别之间相互误分的情况,其中第i行第j列,表示第i类目标被分类为第j类的概率,可以知道,越好的分类器对角线上的值更大,其他地方应该越小。
5.roc AUC指标
分类算法在不同的参数下的表现情况,就可以使用一条曲线,即ROC曲线,全称为receiver operating characteristic。ROC曲线越接近左上角,该分类器的性能越好,若一个分类器的ROC曲线完全包住另一个分类器,那么可以判断前者的性能更好。
AUC(Area Under Curve)为ROC曲线下的面积,它表示的就是一个概率,这个面积的数值不会大于1。随机挑选一个正样本以及一个负样本,AUC表征的就是有多大的概率,分类器会对正样本给出的预测值高于负样本,当然前提是正样本的预测值的确应该高于负样本。
回归指标
IOU
IoU大于等于0.5就认为召回,如果设置更高的IoU阈值,则召回率下降,同时定位框也越更加精确。
在图像分割中也会经常使用IoU,此时就不必限定为两个矩形框的面积。比如对于二分类的前背景分割,那么IoU=(真实前景像素面积∩预测前景像素面积)/(真实前景像素面积∪预测前景像素面积),这一个指标,通常比直接计算每一个像素的分类正确概率要低,也对错误分类更加敏感。
AP
Average Precision Precision-Recall曲线下的面积
AP衡量的是学出来的模型在一个类别上的好坏,mAP衡量的是学出的模型在所有类别上的好坏。
https://zhuanlan.zhihu.com/p/59481933
和阈值的关系下次再说吧