cnn指标

分类指标

  1. acc准确率

Accuracy=(TP+TN)/(TP+FP+TN+FN)

所有样本都正确分类的概率,可以使用不同的阈值T

  1. precision精确度

Precision=TP/(TP+FP),对的正样本/对的分类。表示的是召回为正样本的样本中,到底有多少是真正的正样本。

  1. recall召回率

Recall=TP/(TP+FN),对的正样本/正样本

recall-precison 横轴就是recall,纵轴就是precision,曲线越接近右上角,说明其性能越好,可以用该曲线与坐标轴包围的面积来定量评估,值在0~1之间。

4.F1score

F1 score=2·Precision·Recall/(Precision+Recall),只有在召回率Recall和精确率Precision都高的情况下,F1 score才会很高,因此F1 score是一个综合性能的指标。

  1. 混淆矩阵

类别之间相互误分的情况,其中第i行第j列,表示第i类目标被分类为第j类的概率,可以知道,越好的分类器对角线上的值更大,其他地方应该越小。

5.roc AUC指标

分类算法在不同的参数下的表现情况,就可以使用一条曲线,即ROC曲线,全称为receiver operating characteristic。ROC曲线越接近左上角,该分类器的性能越好,若一个分类器的ROC曲线完全包住另一个分类器,那么可以判断前者的性能更好。

AUC(Area Under Curve)为ROC曲线下的面积,它表示的就是一个概率,这个面积的数值不会大于1。随机挑选一个正样本以及一个负样本,AUC表征的就是有多大的概率,分类器会对正样本给出的预测值高于负样本,当然前提是正样本的预测值的确应该高于负样本。

回归指标

  1. IOU

IoU大于等于0.5就认为召回,如果设置更高的IoU阈值,则召回率下降,同时定位框也越更加精确。

在图像分割中也会经常使用IoU,此时就不必限定为两个矩形框的面积。比如对于二分类的前背景分割,那么IoU=(真实前景像素面积∩预测前景像素面积)/(真实前景像素面积∪预测前景像素面积),这一个指标,通常比直接计算每一个像素的分类正确概率要低,也对错误分类更加敏感。

  1. AP

Average Precision Precision-Recall曲线下的面积

AP衡量的是学出来的模型在一个类别上的好坏,mAP衡量的是学出的模型在所有类别上的好坏。

https://zhuanlan.zhihu.com/p/59481933

和阈值的关系下次再说吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值