最短路径(弗洛伊德算法 和迪杰斯特算法)

本文介绍了一种改进的最短路径算法——Floyd-Warshall,通过实例演示如何利用Floyd算法在给定图中寻找两点之间的最短路径,与Dijkstra算法相比,Floyd算法适用于所有顶点对间的路径查找,效率更高。
摘要由CSDN通过智能技术生成
在这里插入代码#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std;
#define SIZE 50
#define MaxValue 3000
typedef struct
{
	int arcs[SIZE][SIZE];
	int VertexNum;
	int EdgeNum;
	char Vertex[SIZE];
	int IsTravel[SIZE];
	bool S[SIZE];
	int D[SIZE];
	int Path[SIZE];
}GraphMatrix;
GraphMatrix *CreateGraph(GraphMatrix *GM)
{
	char start,end;
	int head,tail,weight; 
   if((GM=(GraphMatrix *)malloc(sizeof(GraphMatrix)))==NULL)
   {
   	cout<<"内存分配失败"<<endl;
	   exit(1); 
   }
   cout<<"请输入图中有多少个顶点和边长"<<endl;
   cin>>GM->VertexNum>>GM->EdgeNum;
   for(int i=0;i<GM->VertexNum;i++)
   {  
           GM->IsTravel[i]=0;
   	  for(int j=0;j<GM->VertexNum;j++)
		 {
		 	GM->arcs[i][j]=MaxValue; 
		 } 
   }
   cout<<"请输入顶点的信息"<<endl;
   for(int i=0;i<GM->VertexNum;i++)
   {
   	 cin>>GM->Vertex[i];
   } 
   cout<<"请输入个边的顶点<start,end>和权值"<<endl;
   for(int i=0;i<GM->EdgeNum;i++)
   {
   	 cin>>start>>end>>weight;
   	 for(head=0;start!=GM->Vertex[head];head++);
   	 for(tail=0;end!=GM->Vertex[tail];tail++);
   	 GM->arcs[head][tail]=weight;
   } 
   return GM;
}
void ShortestPath_DIJ(GraphMatrix *GM,int v0)
{
	int min;
	int v,w;
	for(v=0;v<GM->VertexNum;v++)
	{
		GM->S[v]=false;
		GM->D[v]=GM->arcs[v0][v];
		if(GM->D[v]<MaxValue) GM->Path[v]=v0;
		else GM->Path[v]=-1;
		
	}
	GM->S[v0]=true;
	GM->D[v0]=0;
	for(int i=1;i<GM->VertexNum;i++)
	{
		min=MaxValue;
		for(w=0;w<GM->VertexNum;w++)
		{
			if(!(GM->S[w]) && GM->D[w]<min)
			{
				v=w;
				min=GM->D[w];
			}
		}
		GM->S[v]=true;
		for(w=0;w<GM->VertexNum;w++)
		{
			if(!(GM->S[w]) && GM->D[v]+GM->arcs[v][w]<GM->D[w])
			{
				GM->D[w]=GM->D[v]+GM->arcs[v][w];
				GM->Path[w]=v;
			} 
		} 
	}
} 
int main()
{
	int head,tail;
	char start,end;
	GraphMatrix *GM=NULL;
	GM=CreateGraph(GM);
	cout<<"请输入起点为"<<endl;
	cin>>start;
	for(head=0;start!=GM->Vertex[head];head++);
	cout<<head<<endl;
    ShortestPath_DIJ(GM,head);
    cout<<"请输入终点为"<<endl;
	cin>>end;
	for(tail=0;end!=GM->Vertex[tail];tail++);
	cout<<tail<<endl;
	cout<<start<<"到"<<end<<"的距离为"<<GM->D[tail]; 
	return 0;
}

```#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
#define SIZE 10 
#define MaxValue 3000
typedef struct 
{
	int arcs[SIZE][SIZE];
	char Vertex[SIZE];
	bool IsTravel[SIZE];
	int D[SIZE][SIZE];
	int VertexNum;
	int EdgeNum;
	int Path[SIZE][SIZE];
}GraphMatrix;
GraphMatrix *CreateGraph()
{
	 GraphMatrix *GM;
	char start,end;
	int head,tail,weight; 
	if((GM=(GraphMatrix *)malloc(sizeof(GraphMatrix)))==NULL)
	{
		cout<<"内存分配失败"<<endl;
		exit(1);
	}
   cout<<"请输入图中有多少个顶点和边长"<<endl;
   cin>>GM->VertexNum>>GM->EdgeNum;
   for(int i=0;i<GM->VertexNum;i++)
   { 
   	   GM->IsTravel[i]=false;
	 for(int j=0;j<GM->VertexNum;j++)
	 {
	 	 GM->arcs[i][j]=MaxValue;
	 } 
   }
   cout<<"请输入个顶点的信息"<<endl;
   for(int i=0;i<GM->VertexNum;i++)  cin>>GM->Vertex[i]; 
    cout<<"请输入边长的信息<start,end>和权值"<<endl;
    for(int k=0;k<GM->EdgeNum;k++)
	{
		cin>>start>>end>>weight;
		for(head=0; start!=  GM->Vertex[head];head++);
		for(tail=0; end!=   GM->Vertex[tail];tail++);
		GM->arcs[head][tail]=weight;
	}
	return GM; 
}
void ShortestPath_Floyd(GraphMatrix *GM)
{
	for(int i=0;i<GM->VertexNum;i++) GM->arcs[i][i]=0;
	for(int i=0;i<GM->VertexNum;i++)
	{
		for(int j=0;j<GM->VertexNum;j++) 
		{
			GM->D[i][j]=GM->arcs[i][j];
			if(GM->D[i][j]<MaxValue && i!=j) GM->Path[i][j]=i;
		      else GM->Path[i][j]=-1;
		}
	}
	for(int k=0;k<GM->VertexNum;k++)
	{
		for(int i=0;i<GM->VertexNum;i++)
		{
			for(int j=0;j<GM->VertexNum;j++)
			{
				if(GM->D[i][k]+GM->D[k][j]<GM->D[i][j])
				{
					GM->D[i][j]=GM->D[i][k]+GM->D[k][j];
					GM->Path[i][j]=GM->Path[k][j];
				}
			}
		}
	}
}
int main()
{
	GraphMatrix *GM;
	GM=CreateGraph();
	ShortestPath_Floyd(GM);
	cout<<GM->D[0][2]<<endl;
	//cout<<GM->Path[0][2]<<endl;
	//cout<<GM->Vertex[GM->Path[0][2]]<<endl; 
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值