win11关闭GPU加速

在这里插入图片描述

### 在 Windows 11 上安装 TensorFlow GPU 支持 #### 版本兼容性注意事项 对于希望在 Windows 11 上使用带有 GPU 加速功能的 TensorFlow 用户来说,需要注意的是自 2.10 版本之后官方已停止对原生 Windows 平台下的 GPU 配置的支持[^1]。因此,在此操作系统环境中部署 TensorFlow 的 GPU 功能通常建议通过 WSL2 (Windows Subsystem for Linux version 2) 来实现。 #### 使用 WSL2 进行安装 为了能够在 Windows 11 中利用 GPU 资源运行 TensorFlow,推荐的方法是在 WSL2 下创建 Ubuntu 或其他受支持的 Linux 发行版实例,并在此基础上完成必要的软件栈搭建工作。具体操作流程涉及以下几个方面: - 打开 PowerShell 作为管理员执行命令 `wsl --install` 自动下载并设置默认的 Linux 发行版。 - 对于某些特定情况可能还需要调整 `/etc/wsl.conf` 文件中的选项来优化性能表现。 - **安装 NVIDIA CUDA 工具包与驱动程序** - 访问[NVIDIA 官方网站](https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=2004&target_type=deblocal),按照指引获取适用于目标系统的二进制文件。 - 注意选择与所使用的显卡型号相匹配的版本号。 - **配置 cuDNN 库** - 获取来自同一制造商提供的深度神经网络库——cuDNN,它能够显著提升模型训练效率。 - 将解压后的头文件夹复制到 CUDA 安装路径下相应位置即可生效。 - **准备 Python 开发环境** - 推荐采用 Miniconda 或 Anaconda 创建独立的工作区以隔离不同项目间的依赖关系冲突风险。 - 利用 pip 或者 conda 命令行工具快速拉取最新的稳定版 TensorFlow 包含 GPU 支援的部分。 ```bash # 更新系统包索引 sudo apt update && sudo apt upgrade -y # 添加NVIDIA APT仓库密钥和源列表条目 distribution=$(. /etc/os-release;echo $UBUNTU_CODENAME) curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64/7fa2af80.pub | gpg --dearmor -o /usr/share/keyrings/nvidia.gpg echo "deb [signed-by=/usr/share/keyrings/nvidia.gpg] https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64 /" | tee /etc/apt/sources.list.d/cuda.list # 安装CUDA Toolkit及其配套组件 sudo apt-get install cuda-drivers cuda-toolkit -y # 设置环境变量使当前shell会话立即可用新安装的内容 export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH # 关闭终端重新打开使之永久有效 ``` ```python # 创建新的Conda环境名为tf_gpu_env conda create -n tf_gpu_env python=3.9 # 激活该环境 conda activate tf_gpu_env # 安装TensorFlow GPU版本及相关科学计算库 pip install tensorflow==2.12.0 numpy matplotlib jupyterlab ipython ``` 最后一步验证是否成功加载了 GPU 设备信息: ```python import tensorflow as tf print(tf.__version__) device_name = tf.test.gpu_device_name() if device_name != '/device:GPU:0': raise SystemError('GPU device not found') print(f'Found GPU at: {device_name}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值