1.基础任务:
- 使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能,记录复现过程并截图。
任务截图如下:
2.流程:
具体的详细教程可以参考链接:Tutorial/docs/L1/OpenCompass/readme.md at camp3 · InternLM/Tutorial · GitHub
在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。
- 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
- 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率。
- 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。
1.环境配置
这是每次任务的第一步,相信大家都已经很熟了,我们要创建一个开发机和虚拟环境,并安装好相应的Python依赖库。
2.数据准备
评测数据集
解压评测数据集到 /root/opencompass/data/
处。将会在 OpenCompass 下看到data文件夹。
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
InternLM和ceval 相关的配置文件
列出所有跟 InternLM 及 C-Eval 相关的配置
python tools/list_configs.py internlm ceval
3.使用命令行配置参数法进行评测
打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py
,贴入以下代码
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
然后我们可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。
#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
评测完成后的结果如下图:
4.使用配置文件修改参数法进行评测
配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。本次测试配置在 configs
文件夹 中。此配置通过 继承机制 引入所需的数据集和模型配置,并以所需格式组合 datasets 和 models 字段。 运行以下代码,在configs文件夹下创建eval_tutorial_demo.py
cd /root/opencompass/configs
touch eval_tutorial_demo.py
打开eval_tutorial_demo.py
贴入以下代码。
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_gen import ceval_datasets
from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models
datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models
运行任务时,我们只需将配置文件的路径传递给 run.py:
cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug
评测结果如下:
3.知识点:
1.OpenCompass体系介绍
OpenCompass 是一个用于评测大模型性能的开源平台,旨在为大语言模型、多模态模型等提供一站式的评测服务。
1)开源可复现性:OpenCompass 提供了一个公平、公开、可复现的大模型评测方案。
2)全面的能力维度:OpenCompass 设计了五个主要的评测维度,涵盖了学科、语言、知识、理解、推理等多个方面。
3)丰富的模型支持:OpenCompass 已经支持了超过 20 种不同的模型,包括来自 HuggingFace 的模型和通过 API 提供的模型。
4)分布式高效评测:OpenCompass 支持分布式评测,可以通过简单的命令实现任务的分割和分布处理。
5)多样化评测范式:OpenCompass 支持多种评测模式,包括零样本、小样本以及思维链评测。
6)灵活化拓展:OpenCompass 的设计具有很高的灵活性,可以轻松扩展以支持新的模型或数据集。
7)组成模块:OpenCompass主要由三大核心模块组成:CompassKit、CompassHub、CompassRank。
2.使用命令行方式评测
使用 OpenCompass 通过命令行方式评测模型的过程相对直接。
基本步骤如下:环境准备——》安装OpenCompass——》准备模型——》配置文件——》执行评估——》查看结果。
3.使用配置文件修改参数法进行评测
使用 OpenCompass 通过配置文件的方式来评测模型是一个高效且灵活的方法。首先需要创建一个配置文件。通常是一个 YAML 或 JSON 格式的配置文件。然后运行命令。
喜欢的小伙伴收藏点赞关注吧。