书生实战营-L2-LMDeploy 量化部署进阶实践

 作业!!!

文档由两部分,作业和学习,为了方便助教查看,我把作业放前面了

 W4A16 量化+ KV cache+KV cache 量化 internlm2_5-1_8b-chat

输入以下指令,同时启用量化后的模型、设定kv cache占用和kv cache int4量化internlm2_5-1_8b-chat。

lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

此时显存占用11.3GB

1、在 int4 精度下,1.8B模型权重占用0.9GB3.6/4=0.9GB

2、kv cache占用16.4GB:剩余显存24-0.9=23.1GB,kv cache占用40%,即23.1*0.4=8.5GB

3、其他项1GB

所以11.3GB=权重占用0.9GB+kv cache占用8.5GB+其它项1GB

API开发

之前在启动API服务器LMDeploy API部署InternVL2均是借助FastAPI封装一个API出来让LMDeploy自行进行访问,在这一章节中我们将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。

与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。

保持终端窗口不动,新建一个终端,新建internlm2_5.py

激活环境并运行:

Function call

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

首先进入创建好的conda环境并启动API服务器。目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。

新建一个终端,进入环境并新建一个加和乘函数py,运行:

--------------------------------------------------------------------------------------

前期学习

InternStudio开发机创建与环境搭建

老规矩,先搭环境

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

InternStudio环境获取模型

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

新建的文件夹中有三个模型文件夹 

LMDeploy验证启动模型文件

在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动InternLM2_5-7b-chat!

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

这是运行大模型后InternStudio提供的资源监控:

50%A100就不试了,排队太久 - -

如果选择 50%A100*1 建立机器,同样运行InternLM2.5 7B模型,会发现此时显存占用为36GB

img

那么这是为什么呢?由上文可知InternLM2.5 7B模型为bf16,LMDpeloy推理精度为bf16的7B模型权重需要占用14GB显存;如下图所示,lmdeploy默认设置cache-max-entry-count为0.8,即kv cache占用剩余显存的80%;

此时对于24GB的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB

而对于40GB的显卡,即50%A100,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB

实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB34.8GB

两条查看显存的命令:

LMDeploy API部署InternLM2.5

在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。 

启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

 

由于之前设置过SSH密匙,所以直接连接http://127.0.0.1:23333 

以命令行形式连接API服务器 

运行如下命令,激活conda环境并启动命令行客户端。

conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

以Gradio网页形式

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

打开浏览器,访问地址http://127.0.0.1:6006然后就可以与模型尽情对话了:

LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化k/v cache两种策略。

设置最大kv cache缓存大小 

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

执行以下命令,再来观看占用显存情况。

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

果然减少了4G的显存

设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化

启动API服务器,并以命令行模式链接API,可以看到显存占用为19G

那么本节中19GB的显存占用与设置最大kv cache缓存大小19GB的显存占用区别何在呢?

由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。

相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。

W4A16 模型量化和部署

准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

那么标题中的W4A16又是什么意思呢?

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。 用1.8B模型:

等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。

那么推理后的模型和原本的模型区别在哪里呢?最明显的两点是模型文件大小以及占据显存大小。

我们可以输入如下指令查看在当前目录中显示所有子目录的大小。

cd /root/models/
du -sh *

而原模型大小为:

一经对比即可发觉,3.6G对1.5G,那么显存占用情况对比呢?输入指令启动量化后的模型:

对于W4A16量化之前,即如LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,1.8B模型权重占用3.6GB:1.8×10^9 parameters×2 Bytes/parameter=3.6GB

2、kv cache占用8GB:剩余显存24-3.6=20.4GB,kv cache默认占用80%,即20.4*0.8=16.32GB

3、其他项1GB

而对于W4A16量化之后的显存占用情况(20.2GB):

1、在 int4 精度下,1.8B模型权重占用0.9GB3.6/4=0.9GB

2、kv cache占用16.4GB:剩余显存24-0.9=23.1GB,kv cache默认占用80%,即23.1*0.8=18.5GB

3、其他项1GB

所以20.2GB=权重占用0.9GB+kv cache占用18.5GB+其它项1GB

LMDeploy与InternVL2

本次实践选用InternVL2-26B进行演示,InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。

这边我就不部署了,跟上述操作一致,只是换成了26B模型。

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值