2023年9月数学建模:网络流问题:最大流与最小费用最大流

本文介绍了2023年9月数学建模国赛中最大流和最小费用最大流问题,讲解了Ford-Fulkerson、Edmonds-Karp算法及网络单纯形法等,并提供了MATLAB代码实现,结合实际物流问题展示了应用案例。

2023年9月数学建模国赛期间提供ABCDE题思路加Matlab代码,专栏链接(赛前一个月恢复源码199,欢迎大家订阅):http://t.csdn.cn/Um9Zd

目录

介绍

最大流问题

概念与原理

Ford-Fulkerson算法与Edmonds-Karp算法

最小费用最大流问题

概念与原理

网络单纯形法与最短增广路径法

MATLAB代码实现在本节中,我们将展示如何使用MATLAB代码实现最大流问题的Edmonds-Karp算法和最小费用最大流问题的最短增广路径法。请注意,这些代码仅供参考,您可能需要根据具体问题进行调整。

Edmonds-Karp算法

最短增广路径法

数学建模案例

总结


介绍

网络流问题是一类涉及流量分配和网络拓扑的组合优化问题。在这篇博客中,我们将重点介绍网络流问题的两个重要变种:最大流问题和最小费用最大流问题。我们将详细讨论这两个问题的原理,分析解决它们的常用算法,并展示如何使用MATLAB代码实现这些算法。最后,我们将介绍一个数学建模案例,以便更好地理解这些概念。

最大流问题

概念与原理

最大流问题是在一个有向图中找到从源节点(source)到汇节点(sink)的最大流量。有向图中的每条边都有一个正整数容量,表示该边能承受的最大流量。我们的目标是找到一个合法的流量分配方案,使得从源到汇的总流量最大,并且满足以下条件:

  1. 流量不能超过边的容量。
  2. 除源节点和汇节点外,任何节点的流入流量等于流出流量。

Ford-Fulkerson算法与Edmonds-Karp算法

Ford-Fulkerson算法是一种解决最大流问题的经典方法。该算法基于以下观察:在流量分配方案中,可以通过增加一条从源到汇的增广路径(augmenting path)来增加总流量。增广路径是一条从源到汇的路径,其边的剩余容量大于0。在找到增广路

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值