2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 详细思路+matlab代码+python代码+论文范例

持续更新中,2024年所有 数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。

 5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!

C 农作物的种植策略
根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济
的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略,有利于方便田间管理,提
高生产效益&
### 关于2024高教全国大学生数学建模竞赛C农作物种植策略MATLAB实现 #### 问背景与目标设定 针对2024高教全国大学生数学建模竞赛C中的农作物种植策略,主要探讨如何通过优化模型来提高农业生产效率并减少资源浪费。该目旨在利用历史数据预测未来产量,并基于此制定最优播种计划[^1]。 #### 数据预处理阶段 为了构建有效的数学模型,在开始之前需先对收集到的历史气象条件、土壤肥力以及历收成情况进行清洗和整理。这一步骤通常涉及缺失值填补、异常点检测及标准化转换等工作。可以借助MATLAB内置函数完成这些操作: ```matlab % 假设data是一个包含原始观测记录的数据表 cleanedData = fillmissing(data, 'previous'); % 使用前一时刻数值填充缺省项 zscoredData = zscore(cleanedData); % 对各列执行Z分数变换以消除量纲影响 ``` #### 构建预测模型 接下来建立用于估计不同因素组合下预期产出水平的关系式。考虑到实际场景复杂多变的特点,推荐采用机器学习算法如支持向量机(SVM)或随机森林(Random Forest),它们能够较好地捕捉非线性模式且具备较强的泛化能力。下面给出一段简单的SVM训练过程示例代码片段: ```matlab % X代表输入特征矩阵;Y表示对应的目标变量向量 model = fitcsvm(X,Y,'KernelFunction','rbf'); predictedValues = predict(model,X_test); ``` #### 设计决策规则 最后依据所得出的结果设计具体的耕作方案。这里可以通过求解整数规划问找到使总收益最大化的作物种类搭配方式及其相应的栽种面积分配比例。以下是运用遗传算法(Genetic Algorithm)解决此类离散型最优化难的一个简单实例: ```matlab options = optimoptions('ga', ... 'PopulationSize',50,... 'MaxGenerations',200); [x,fval] = ga(@objectiveFcn,nvars,[],[],[],[],lb,ub,[],options); disp(['Optimal solution found at point ',num2str(x)]); disp(['with objective function value of ', num2str(fval)]); function f = objectiveFcn(x) % 定义适应度计算逻辑... end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值