引言
随着全球人口老龄化的加速,老年人跌倒事故的发生频率逐年上升,给社会和家庭带来了沉重的负担。跌倒不仅会导致老年人身体上的伤害,还可能对他们的心理健康产生长期影响。为了降低跌倒风险,许多研究者开始关注基于计算机视觉和深度学习的跌倒检测系统。本文将详细介绍一个基于YOLOv10模型的跌倒检测系统,包括数据集准备、模型训练、用户界面设计和系统实现等内容。
目录
一、项目概述
1.1 研究背景
跌倒检测系统的核心任务是实时监测用户的动作,通过分析视频流来识别是否发生了跌倒。传统的跌倒检测方法往往依赖于传感器和人工监测,不仅成本高昂,还可能造成漏检和误判。而基于深度学习的视觉检测方法,能够在各种环境下提供高效、准确的解决方案。
1.2 系统功能
该跌倒检测系统主要具有以下功能:
- 实时监测用户的动作状态。
- 自动识别跌倒事件,并发出警报。
- 可视化检测结果,支持记录与导出检测数据。