植物分类与检测在农业、生态保护和科研等领域具有重要的应用价值。本文将通过使用深度学习模型(YOLOv5)构建一个植物分类检测系统,结合自定义数据集完成模型训练,并为系统设计一个简洁易用的UI界面。最终的系统支持实时视频检测、图片识别及分类展示。
目录
一、项目概述
1.1 项目背景与意义
植物分类检测系统可以广泛应用于以下场景:
- 农业管理:实时检测农作物病虫害种类及其覆盖范围。
- 生态监测:识别特定物种,监控其分布和生长状态。
- 植物科普:快速分类植物种类,为科研或科普教育提供支持。
本项目选用YOLOv5作为基础模型,利用自定义数据集进行训练,并通过PyQt5设计交互式UI界面,实现友好的用户体验。
1.2 系统功能
系统主要功能:
- 图片分类检测:用户上传植物图片,模型进行分类和定位。
- 实时视频检测:通过摄像头实时检测植物并输出分类结果。
- 结果可视化:检测结果以图片、标签和置信度的形式展示。
- 模型管理:支持加载预训练模型或自定义训练模型。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



