题意:
给你一个树,现在小A和小B在树根,每次可以将棋子往儿子节点移动一次,如果一个人不能再移动了,他就输了。小A先行动,现在问你小A是否可以必胜,如果必胜输出Gen,否则输出Dui。
思考:
看到这种博弈题,就想去从初始状态去推出来其他状态,这题也一样。很明显,对于任何叶子节点,他都是必败点。现在呢,如果一个点如果他的儿子中有一个是必败点,那么这个点是必胜点,因为他肯定转移到必败点。当然如果一个点的所有儿子都是必胜点,那么这个点就是必败点。
代码:
int T,n,m,k;
int va[N];
vector<int > e[N];
void dfs(int now,int p)
{
int res = 0;
for(auto spot:e[now])
{
if(spot==p) continue;
res++;
dfs(spot,now);
}
if(!res) va[now] = -1;
else
{
int t1 = 0,t2 = 0;
for(auto spot:e[now])
{
if(spot==p) continue;
if(va[spot]==-1) t1 = 1;
else t2++;
}
if(t2==res) va[now] = -1;
if(t1) va[now] = 1;
}
}
signed main()
{
IOS;
cin>>T;
while(T--)
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
va[i] = 0;
e[i].clear();
}
for(int i=1;i<n;i++)
{
int a,b;
cin>>a>>b;
e[a].pb(b);
e[b].pb(a);
}
dfs(m,0);
if(va[m]==1) cout<<"Gen\n";
else cout<<"Dui\n";
}
}
总结:
多多思考和注意细节,别乱想就行了。