问题描述
蒜头君有 n 只气球,蒜头君把气球排成一排。初始时,气球都是白色,现在蒜头君想用 m 种颜色给气球涂色,如果相邻的气球的颜色相同,这 2 个气球会发生消消乐,蒜头君希望你求出会发生消消乐的涂色方法有多少种。最后答案对 10^9+7取模。
输入格式
输入两个整数n(1<=n<=1012),m(1<=m<=108)
输出格式
输出一行表示答案。
样例输入
3 4
样例输出
28
思路:
由于正着不好计算,就反向计算,总共涂色方案m^n
,都不相邻的方式为m*(m-1)^(n-1)
,两数做差即可。
#include <iostream>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll n,m;
ll mod_pow(ll x,ll n,ll mod){
ll res=1;
while(n){
if(n&1) res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
int main()
{
cin>>n>>m;
cout<<mod_pow(m,n,mod)-m*mod_pow(m-1,n-1,mod)<<endl;
} // namespace std;