【深度学习】如何在PyToch中查看是否存在mps(针对M系列芯片)
mps 设备支持使用 Metal 编程框架的 MacOS 设备在 GPU 上进行高性能训练。它引入了一种新的设备,用于分别在高效的 Metal Performance Shaders Graph 框架和 Metal Performance Shaders 框架提供的调优内核上映射机器学习计算图和基元。
新的 MPS 后端扩展了 PyTorch 生态系统,并提供了现有的脚本功能,用于在 GPU 上设置和运行操作。
要开始使用,只需将 Tensor 和 Module 移动到 mps 设备:
# Check that MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
else:
mps_device = torch.device("mps")
# Create a Tensor directly on the mps device
x = torch.ones(5, device=mps_device)
# Or
x = torch.ones(5, device="mps")
# Any operation happens on the GPU
y = x * 2
# Move your model to mps just like any other device
model = YourFavoriteNet()
model.to(mps_device)
# Now every call runs on the GPU
pred = model(x)
我根据我所训练的模型,将其更改:
def try_gpu(): #@save
"""如果存在,则返回gpu(i),否则返回cpu()"""
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
mps_device = torch.device("cpu")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
mps_device = torch.device("cpu")
else:
mps_device = torch.device("mps")