import torch
from torch import nn
from d2l import torch as d2l
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# 例如彩色图像具有标准的RGB通道来代表红、绿和蓝。
# 这使得我们可以将输入、卷积核和输出看作二维张量。
# 当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量。
# 例如,每个RGB输入图像具有 3 * h * w 的形状。
# 我们将这个大小为3的轴称为通道(channel)维度。
# 1.多输入通道
# 当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便与输入数据进行互相关运算。
def corr2d_multi_in(X, K):
# 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = d2l.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = d2l.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
print(corr2d_multi_in(X, K))
# 2.多输出通道
def corr2d_multi_in_out(X, K):
# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
# 最后将所有结果都叠加在一起
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
# 通过将核张量K与K+1(K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核。
K = torch.stack((K, K + 1, K + 2), 0)
print(K.shape)
print(corr2d_multi_in_out(X, K))
# 3. 1X1卷积层
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
print('c_i: ', c_i) # 输入的通道数
print('h: ', h) # 输入的高
print('w: ', w) # 输入的宽
c_o = K.shape[0] # 卷积核的通道数
X = X.view(c_i, h * w) # 3 * 9
K = K.view(c_o, c_i) # 2 * 3
Y = torch.mm(K, X) # 全连接层的矩阵乘法
return Y.view(c_o, h, w)
X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6
21卷积层里的多输入多输出通道(pycharm版)
最新推荐文章于 2024-11-10 10:54:30 发布