1、阅读论文
1.1《基于数据驱动贝叶斯网络的内河船舶交通事故分析》2022年
使用的贝叶斯可视化软件Netica
主要包括三个步骤:结构学习、参数学习、推理分析。
由于采用具有唯一子节点的朴素贝叶斯网 络结构(见图1),目标节点的条件概率表将会非常庞 大,进行参数学习时会作为模型变量极大地增加工作 量。因此,考虑到贝叶斯网络具有双向风险分析的能 力 ,为 了 简 化 结 构 ,本文提出了一种改进的发散朴素 贝 叶 斯 网 络 结 构 。 该结构将目标节点当作唯一的父 节点,其余影响因素均作为该父节点影响下的子节点 (见图2),这种结构可以在很大程度上减少条件概率 的计算量,且对最终的结果没有影响。
结构学习
贝叶斯网络模型的拓扑结构的确定,即节点和有向边的构建过程。
建立朴素贝叶斯网络(见图4),此时事故类型是唯一的父节点,其余各子节点也就是原始的各影响因素。
参数学习
在贝叶斯网络的固定拓扑结构下,根据训练数据计算条件概率分布(即条件概率表,CPT)的过程。
在文章中,参数学习基于芜湖海事局提供的内河船舶交通事故数据进行,通过Netica软件对模型中的关键节点进行条件概率计算。通过贝叶斯可视化软 件 Netica对模型中的关键 节 点 进 行 参 数 学 习,而 一 旦条件概率表被构 建 与 获 得,就可以计算每个影响 因 素 的 后 验 概 率。
推理分析
利用贝叶斯网络模型进行正向推理或反向诊断,从而分析事故类型与影响因素之间的关系,并预测不同情景下的事故类型。
1、仅从模型训练完后的结果进行分析
2、贝叶斯网络正向推理——根据目标节点事故类型,结合事故概率分布变化逆推子节点影响因素的重要性。(将父节点的某一中情况的概率调整到100%,查看子节点变化)
3、贝叶斯网络模型验证——调 用python程序对该事故船舶 数 据 集 进 行 验 证 ,经正向验证发现该模型预测的准 确率为75.4%,表明该模型 具 备 一 定 的 参 考 性。在python程 序 中,本文针对该数据集基 于朴素贝叶斯网 络 模 型 进 行 了 100 次 训 练,每 次 均 随机选用70% 作 为 训 练 样 本、30% 作 为 验 证 样 本
4、逆向推理——考虑到贝叶斯网络模型具备动态分析的功能特 点 ,其适用于分析在涉及船舶运行特征和环境因素 等不同情景下各种事故类型发生的可能性。因此, 本文通过设置多个影响因素同时变动的四个复合场景 ,用以判断在不同场景下最有可能发生的事故类型 ,并找出该事故类型对应的主要影响因素,以为海事局等部门制定相应的防控措施提供理论支持。(将几个子节点的某些情况的概率值调到100%,观察父节点变化)
1.2《塔吊作业事故关联规则挖掘及贝叶斯建模分析》2024年
为简化贝叶斯网络结构,提升模型推理分析的 效率和精度,采用一种发散朴素贝叶斯网络结构,设 置事故类型为唯一父节点进行结构初步构建。 将筛选出的符合关联规则挖掘条件的规则项,按照从先决节点到结果节点指向添加有向边,完成贝叶斯网络结构扩展及优化。(和上面的思想一样,把目标节点作为唯一父节点,不过通过关联规则挖掘增加一些子节点的联系。)
参数学习的方法有两种[9] :一种是通 过问卷调查的方法,基于专家经验计算相关节点的先 验概率及条件概率;二是采用数据驱动的方法,通过收 集的案例数据对贝叶斯网络模型进行训练,获取相关 节点的条件概率。 为降低推理过程的主观性,本文采 用数据驱动的方式进行贝叶斯网络参数学习。
建立了一个基于关联规则 改进朴素贝叶 斯网络的塔吊作业事故分析模型。基于关联规则挖掘结果进行贝叶斯网络结构学习,采用数据驱动的方式进行参数学习。
诊断推理也被称为逆向推理,即根据目标节点 的事故类型,结合事故概率分布变化逆推风险因素 子节点的重要程度, 探究塔吊事故发生的成因机制。(将父节点的某一中情况的概率调整到100%,查看子节点变化)
因果推理也被称为正向推理,即通过设置风险因素节点概率,观测目标节点概率的变化情况。(将几个子节点的某些情况的概率值调到100%,观察父节点变化)
这个正/逆向推理和上篇文章反过来的。……………………
1.3《基于博弈论—模糊贝叶斯网络的低温风洞风险评估研究》2024年
风 险 评 估
1)因果推理:利用低温风洞贝叶斯网络 的 正 向 推 理 进行因果推理,评 估 各 风 险 事 故 发 生 概 率,帮 助 对 整 个 系统各方面的安全性进行评估。
2)风险诊断:利用低温风洞贝叶斯网络 的 逆 向 推 理 进行风险诊断,在 假 定 某 个 风 险 事 故 发 生 的 情 况 下,计 算导致该事故发生的各种风险因 素 的 后 验 概 率,进 而 快 速对风险 因 素 进 行 诊 断,帮 助 制 定 更 有 效 的 风 险 控 制 措施。(将父节点的某一中情况的概率调整到100%,查看子节点变化)
这个论文和第二篇的正/逆向相同。
使用的参数学习方法是专家经验。
2、GeNie学习资料
GeNie下载:BayesFusion Downloadshttps://download.bayesfusion.com/files.html?category=Academia
GeNie使用文档:GeNIe Modelerhttps://support.bayesfusion.com/docs/GeNIe/
可参考的视频:
Genie的基本使用_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1f3411T7wj/?share_source=copy_web&vd_source=6b976bed139cec5a327eed0a62d9bda9
Wix Studio | The ultimate design experience for agencies and enterpriseshttps://www.youtube.com/watch?v=aW3gxE6XB9E