关联、干预、反事实推理

因果推理综述——《A Survey on Causal Inference》一文的总结和梳理 - 打瞌睡的布偶猫 - 博客园

不能仅仅根据观察到的两个变量之间的关联来合理推断两个变量之间的因果关系。

相关性是对称的(双向箭头),而因果关系是不对称的(单向箭头)。

Pearl在《The Book of Why:The New Science of Cause and Effect》中将因果关系分为三个层次(“因果关系之梯”),自底到顶分别是:关联、干预、反事实推理。

最底层关联——就是我们通常意义下所认识的深度学习在做的事情,通过观察到的数据找出变量之间的关联性。无法得出事件互相影响的方向,只知道两者相关,比如我们知道事件A发生时,事件B也发生,但不能挖掘出,是不是因为事件A的发生导致了事件B的发生。

第二层干预——我们希望知道,当改变事件A时,事件B是否会随之改变。

最高层反事实——“执果索因”,如果想让事件B发生某种变化时,能否通过改变事件A来实现。

因果推理

因果推理是根据一个结果发生的条件对因果关系得出结论的过程。

存在两种研究方法:
实验性研究——做大量随机对照试验,代价昂贵、耗时耗力
观测性研究——从已有的能观测到的数据中进行因果关系的研究。主要方法有因果图模型和潜在结果框架。简单高效、易于理解。

因果推理方法

重加权算法、分层算法、匹配算法、基于树的方法、表示学习、多任务学习、元学习

Causal ML 因果机器学习

传统机器学习和因果机器学习都是强大的工具,但它们服务于不同的目的并回答不同类型的问题。传统的机器学习主要关注预测。给定一组输入特征,它从数据中学习一个可以预测结果的函数。它非常适合在大型数据集中查找模式和相关性,但它并不能告诉我们变量之间的因果关系。它回答了诸如“根据患者的症状,他们可能患有什么疾病?”之类的问题。另一方面,因果机器学习关注的是理解变量之间的因果关系。它超越了预测,并试图回答有关干预的问题:“如果我们改变这个变量会发生什么?”例如,在医疗背景下,它可以帮助回答诸如“如果患者服用这种药物会发生什么?”之类的问题。从本质上讲,传统机器学习可以告诉我们“是什么”,而因果机器学习可以帮助我们理解“假设”。这使得因果机器学习在我们需要根据数据做出决策的领域特别有用,例如政策制定、经济和医疗保健。

当前有关因果推断的研究主要包括两个方向:一是因果发现(Causal Discovery),二是因果效应的估计(Causal Effect Estimation)。因果发现旨在从纷繁的数据中,挖掘出变量之间的因果关系,其本质是要找到用于描述变量间因果关系的图网络结构。因果效应估计主要研究原因变量对结果变量的影响程度,其本质是建立因果模型并输出对增量的预测值。

开源因果推理方法

基于Python语言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值